RESUMO
Scattering by infinite hexagonal ice prisms is calculated using Maxwell's equations in the discrete dipole approximation for size parameters x = πD/λ up to x = 400 (D = prism diameter). Birefringence is included in the calculations. Applicability of the geometric optics approximation is investigated. Excellent agreement between wave optics and geometric optics is observed for large size parameter in the outer part of the 22 degree halo feature. For smaller ice crystals halo broadening is predicted, and there is appreciable "spillover" of the halo into shadow scattering angles < 22 degrees. Ways to retrieve ice crystal sizes are suggested based on the full width at half-maximum of the halo, the power at < 22deg, and the halo polarization.
RESUMO
A near-field calculation of light electric field intensity inside and in the vicinity of a scattering particle is discussed in the discrete dipole approximation. A fast algorithm is presented for gridded data. This algorithm is based on one matrix times vector multiplication performed with the three dimensional fast Fourier transform. It is shown that for moderate and large light scattering near field calculations the computer time required is reduced in comparison to some of the other methods.
Assuntos
Algoritmos , Modelos Teóricos , Análise Numérica Assistida por Computador , Óptica e Fotônica/métodos , Campos Eletromagnéticos , Espalhamento de RadiaçãoRESUMO
Improvements in complex-conjugate gradient algorithms applied to the discrete-dipole approximation are reported. It is shown that computational time is reduced by use of the stabilized version of the biconjugate gratings algorithm, with diagonal left preconditioning.
RESUMO
We show how fast-Fourier-transform methods can be used to accelerate computations of scattering and absorption by particles of arbitrary shape using the discrete-dipole approximation.
RESUMO
This paper applies two different techniques to the problem of scattering by two spheres in contact: modal analysis, which is an exact method, and the discrete-dipole approximation (DDA). Good agreement is obtained, which further demonstrates the utility of the DDA to scattering problems for irregular particles. The choice of the DDA polarizability scheme is discussed in detail. We show that the lattice dispersion relation provides excellent improvement over the Clausius-Mossoti polarizability parameterization.
RESUMO
The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.