Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 46(8): 623-625, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33879366

RESUMO

The bacterial mechanosensitive channel of small conductance (MscS) is a well-studied model of how mechanical forces from the membrane can be sensed by an embedded protein. A recent study by Zhang et al. visualizes how MscS behaves under membrane tension, entering a desensitized state when it loses all coordinated lipids.


Assuntos
Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Modelos Moleculares
2.
Trends Biochem Sci ; 48(3): 199-202, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804037
3.
ACS Appl Mater Interfaces ; 12(22): 24531-24543, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378873

RESUMO

Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.


Assuntos
Portadores de Fármacos/química , Micelas , Oxazóis/química , Polímeros/química , Tensoativos/química , Curcumina/química , Portadores de Fármacos/síntese química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oxazóis/síntese química , Paclitaxel/química , Polímeros/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Tensoativos/síntese química
4.
J Mol Biol ; 431(17): 3081-3090, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291591

RESUMO

Since life has emerged, gradients of osmolytes over the cell membrane cause pressure changes in the cell and require tight regulation to prevent cell rupture. The mechanosensitive channel of small conductance (MscS) releases solutes and water when a hypo-osmotic shock raises the pressure in the cell. It is a member of a large family of MscS-like channels found in bacteria, archaea, fungi and plants and model for mechanosensation. MscS senses the increase of tension in the membrane directly by the force from the lipids, but the molecular mechanism is still elusive. We determined the lipid interactions of MscS by resolving the structure of Escherichia coli MscS embedded in membrane discs to 2.9-Å resolution using cryo-electron microscopy. The membrane is attached only to parts of the sensor paddles of MscS, but phospholipid molecules move through grooves into remote pockets on the cytosolic side. On the periplasmic side, a lipid bound by R88 at the pore entrance is separated from the membrane by TM1 helices. The N-terminus interacts with the periplasmic membrane surface. We demonstrate that the unique membrane domain of MscS promotes deep penetration of lipid molecules and shows multimodal interaction with the membrane to fine-tune tension sensing.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Fenômenos Biofísicos , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Membranas/metabolismo , Modelos Moleculares , Pressão Osmótica , Fosfolipídeos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA