Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Magn Reson Imaging ; 50(4): 1268-1277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30864193

RESUMO

BACKGROUND: Patients with newly diagnosed inoperable glioma receive chemoradiotherapy (CRT). Standard Response Assessment in Neuro-Oncology (RANO) takes a minimum of 4 weeks after the end of treatment. PURPOSE/HYPOTHESIS: To investigate whether chemical exchange saturation transfer (CEST) MRI enables earlier assessment of response to CRT in glioma patients. STUDY TYPE: Longitudinal prospective study. POPULATION: Twelve brain tumor patients who underwent definitive CRT were included in this study. Three longitudinal CEST MRI measurements were performed for each patient at 7T: first before, second immediately after completion of CRT, and a third measurement as a 6-week follow-up. FIELD STRENGTH/SEQUENCE: Conventional MRI (contrast-enhanced, T2 w and diffusion-weighted imaging) at 3T and T2 w and CEST MRI at 7T was performed for all patients. ASSESSMENT: The mean relaxation-compensated relayed nuclear-Overhauser-effect CEST signal (rNOE) and the mean downfield-rNOE-suppressed amide proton transfer (dns-APT) CEST signal were investigated. Additionally, choline-to-N-acetyl-aspartate ratios (Cho/NAA) were evaluated using single-voxel 1 H-MRS in six of these patients. Performance of obtained contrasts was analyzed in assessing treatment response as classified according to the updated RANO criteria. STATISTICAL TEST: Unpaired Student's t-test. RESULTS: The rNOE signal significantly separated stable and progressive disease directly after the end of therapy (post-treatment normalized to pre-treatment mean ± SD: rNOEresponder = 1.090 ± 0.110, rNOEnon-responder = 0.808 ± 0.155, P = 0.015). In contrast, no significant difference was observed between either group when assessing the normalized dns-APT (dns-APTresponder = 0.953 ± 0.384, dns-APTnon-responder = 0.972 ± 0.477, P = 0.95). In the smaller MRS subcohort, normalized Cho/NAA decreased in therapy responders (Cho/NAAresponder = 0.632 ± 0.007, Cho/NAAnon-responder = 0.946 ± 0.124, P = 0.070). DATA CONCLUSION: rNOE mediated CEST imaging at 7T allowed for discrimination of responders and non-responders immediately after the end of CRT, additionally supported by 1 H-MRS data. This is at least 4 weeks earlier than the standard clinical evaluation according to RANO. Therefore, CEST MRI may enable early response assessment in glioma patients. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019;50:1268-1277.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioma/tratamento farmacológico , Glioma/radioterapia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/efeitos da radiação , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Aumento da Imagem/métodos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
2.
Invest Radiol ; 57(11): 752-763, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640004

RESUMO

OBJECTIVES: Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS). MATERIALS AND METHODS: This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations. RESULTS: The "multilabel nnU-Net" segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3-8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3-8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively). CONCLUSIONS: This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.


Assuntos
Aprendizado Profundo , Neoplasias , Medula Óssea/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Medicina de Precisão , Estudos Retrospectivos , Imagem Corporal Total
3.
PLoS One ; 12(4): e0174620, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384170

RESUMO

PURPOSE: The purpose of this study was to investigate whether a voxel-wise analysis of apparent diffusion coefficient (ADC) values may differentiate between progressive disease (PD) and pseudoprogression (PsP) in patients with high-grade glioma using the parametric response map, a newly introduced postprocessing tool. METHODS: Twenty-eight patients with proven PD and seven patients with PsP were identified in this retrospective feasibility study. For all patients ADC baseline and follow-up maps on four subsequent MRIs were available. ADC maps were coregistered on contrast enhanced T1-weighted follow-up images. Subsequently, enhancement in the follow-up contrast enhanced T1-weighted image was manually delineated and a reference region of interest (ROI) was drawn in the contralateral white matter. Both ROIs were transferred to the ADC images. Relative ADC (rADC) (baseline)/reference ROI values and rADC (follow up)/reference ROI values were calculated for each voxel within the ROI. The corresponding voxels of rADC (follow up) and rADC (baseline) were subtracted and the percentage of all voxels within the ROI that exceeded the threshold of 0.25 was quantified. RESULTS: rADC voxels showed a decrease of 59.2% (1st quartile (Q1) 36.7; 3rd quartile (Q3) 78.6) above 0.25 in patients with PD and 18.6% (Q1 3.04; Q3 26.5) in patients with PsP (p = 0.005). Receiver operating characteristic curve analysis showed the optimal decreasing rADC cut-off value for identifying PD of > 27.05% (area under the curve 0.844±0.065, sensitivity 0.86, specificity 0.86, p = 0.014). CONCLUSION: This feasibility study shows that the assessment of rADC using parametric response maps might be a promising approach to contribute to the differentiation between PD and PsP. Further research in larger patient cohorts is necessary to finally determine its clinical utility.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Idoso , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
PLoS One ; 10(3): e0121220, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789657

RESUMO

OBJECTIVE: To explore the correlation between Nuclear Overhauser Enhancement (NOE)-mediated signals and tumor cellularity in glioblastoma utilizing the apparent diffusion coefficient (ADC) and cell density from histologic specimens. NOE is one type of chemical exchange saturation transfer (CEST) that originates from mobile macromolecules such as proteins and might be associated with tumor cellularity via altered protein synthesis in proliferating cells. PATIENTS AND METHODS: For 15 patients with newly diagnosed glioblastoma, NOE-mediated CEST-contrast was acquired at 7 Tesla (asymmetric magnetization transfer ratio (MTRasym) at 3.3ppm, B1 = 0.7 µT). Contrast enhanced T1 (CE-T1), T2 and diffusion-weighted MRI (DWI) were acquired at 3 Tesla and coregistered. The T2 edema and the CE-T1 tumor were segmented. ADC and MTRasym values within both regions of interest were correlated voxelwise yielding the correlation coefficient rSpearman (rSp). In three patients who underwent stereotactic biopsy, cell density of 12 specimens per patient was correlated with corresponding MTRasym and ADC values of the biopsy site. RESULTS: Eight of 15 patients showed a weak or moderate positive correlation of MTRasym and ADC within the T2 edema (0.16≤rSp≤0.53, p<0.05). Seven correlations were statistically insignificant (p>0.05, n = 4) or yielded rSp≈0 (p<0.05, n = 3). No trend towards a correlation between MTRasym and ADC was found in CE-T1 tumor (-0.310.05, n = 6). The biopsy-analysis within CE-T1 tumor revealed a strong positive correlation between tumor cellularity and MTRasym values in two of the three patients (rSppatient3 = 0.69 and rSppatient15 = 0.87, p<0.05), while the correlation of ADC and cellularity was heterogeneous (rSppatient3 = 0.545 (p = 0.067), rSppatient4 = -0.021 (p = 0.948), rSppatient15 = -0.755 (p = 0.005)). DISCUSSION: NOE-imaging is a new contrast promising insight into pathophysiologic processes in glioblastoma regarding cell density and protein content, setting itself apart from DWI. Future studies might be based on the assumption that NOE-mediated CEST visualizes cellularity more accurately than ADC, especially in the CE-T1 tumor region.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico , Glioblastoma/patologia , Neoplasias Encefálicas/complicações , Difusão , Edema/complicações , Feminino , Glioblastoma/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA