Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 40(43): 8262-8275, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32928885

RESUMO

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.


Assuntos
Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/biossíntese , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Linhagem da Célula/genética , Sobrevivência Celular/genética , Corpo Estriado/embriologia , Corpo Estriado/crescimento & desenvolvimento , Feminino , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Mesencéfalo/embriologia , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/fisiologia , Camundongos , Camundongos Knockout , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurotoxinas/toxicidade , Gravidez , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética
2.
Mol Pharmacol ; 87(3): 525-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25552485

RESUMO

To determine whether orexinergic hypothalamic peptides can influence the survival of brainstem dopamine (DA) neurons, we used a model system of rat midbrain cultures in which DA neurons degenerate spontaneously and progressively as they mature. We established that orexin (OX)-B provides partial but significant protection to spontaneously dying DA neurons, whereas the homologous peptide OXA has only marginal effects. Importantly, DA neurons rescued by OXB accumulated DA efficiently by active transport, suggesting that they were functional. G-protein-coupled OX1 and OX2 receptors were both present on DA neurons, but the protective effect of OXB was attributable solely to OX2 receptors; a selective inhibitor of this receptor subtype, N-ethyl-2-[(6-methoxy-3-pyridinyl)[(2-methylphenyl)sulfonyl]amino]-N-(3-pyridinylmethyl)-acetamide (EMPA), suppressed this effect, whereas a selective agonist, [Ala(11), d-Leu(15)]OXB, reproduced it. Survival promotion by OXB required intracellular calcium mobilization via inositol-1,4,5-triphosphate and ryanodine receptors. Nicotine, a well known neuroprotective molecule for DA neurons, improved OXB-mediated rescue through the activation of α-bungarotoxin-sensitive (presumably α7) nicotinic receptors, although nicotine had no effect on its own. Altogether, our data suggest that the loss of hypothalamic orexinergic neurons that occurs in Parkinson's disease might confer an increased vulnerability to midbrain DA neurons in this disorder.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Mesencéfalo/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Neuropeptídeos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Nicotina/administração & dosagem , Sono , Animais , Células Cultivadas , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Mesencéfalo/patologia , Degeneração Neural/patologia , Orexinas , Ratos , Ratos Wistar , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA