Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374986

RESUMO

In previous work we evaluated an opioid glycopeptide with mixed µ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood-brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus Phyllomedusa). We tested BBI-11008 for BBB-penetration after intraperitoneal (i.p.) injection and evaluated effects in LID rats. BBI-11008 (10 mg/kg) demonstrated good CNS-penetrance as shown by microdialysis and mass spectrometric analysis, with peak concentration levels of 150 pM in the striatum. While BBI-11008 at both 10 and 20 mg/kg produced no effect on levodopa-induced limb, axial and oral (LAO) abnormal involuntary movements (AIMs), it reduced the levodopa-induced locomotor AIMs by 50% after systemic injection. The N-methyl-D-aspartate receptor antagonist MK-801 reduced levodopa-induced LAO AIMs, but worsened PD symptoms in this model. Co-administration of MMP-2200 had been shown prior to block the MK-801-induced pro-Parkinsonian activity. Interestingly, BBI-11008 was not able to block the pro-Parkinsonian effect of MK-801 in the LID model, further indicating that a balance of mu- and delta-opioid agonism is required for this modulation. In summary, this study illustrates another example of meaningful BBB-penetration of a glycopeptide analogue of a peptide to achieve a central behavioral effect, providing additional evidence for the glycosylation technique as a method to harness therapeutic potential of peptides.


Assuntos
Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/fisiopatologia , Glicopeptídeos/farmacologia , Atividade Motora/efeitos dos fármacos , Doença de Parkinson Secundária/fisiopatologia , Receptores Opioides delta/agonistas , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/farmacologia , Animais , Corpo Estriado/metabolismo , Maleato de Dizocilpina/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Glicopeptídeos/administração & dosagem , Glicopeptídeos/farmacocinética , Levodopa , Masculino , Atividade Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Ratos Sprague-Dawley , Receptores Opioides delta/metabolismo
2.
Brain Res ; 1821: 148613, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783263

RESUMO

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA. While nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, it affected the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of l-DOPA in a rat PD model with a moderate striatal 6-hydroxdopamine (6-OHDA) lesion. We tested five escalating doses of l-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg l-DOPA doses. However, after reaching the 72 mg/kg l-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of l-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we observed an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Animais , Levodopa/efeitos adversos , Dopamina , Receptores Opioides kappa , Ratos Sprague-Dawley , Doença de Parkinson/tratamento farmacológico , Corpo Estriado , Oxidopamina/toxicidade , Modelos Animais de Doenças
3.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37577558

RESUMO

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA. Nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, but a change in the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of L-DOPA in a rat PD model with a moderate striatal 6-hydroxydopamine (6-OHDA) lesion. We tested five escalating doses of L-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg L-DOPA doses. However, after dosing with 72 mg/kg L-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of L-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we saw an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.

4.
Exp Neurol ; 333: 113413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717354

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. Pharmacotherapy with L-DOPA remains the gold-standard therapy for PD, but is often limited by the development of the common side effect of L-DOPA-induced dyskinesia (LID), which can become debilitating. The only effective treatment for disabling dyskinesia is surgical therapy (neuromodulation or lesioning), therefore effective pharmacological treatment of LID is a critical unmet need. Here, we show that sub-anesthetic doses of ketamine attenuate the development of LID in a rodent model, while also having acute anti-parkinsonian activity. The long-term anti-dyskinetic effect is mediated by brain-derived neurotrophic factor-release in the striatum, followed by activation of ERK1/2 and mTOR pathway signaling. This ultimately leads to morphological changes in dendritic spines on striatal medium spiny neurons that correlate with the behavioral effects, specifically a reduction in the density of mushroom spines, a dendritic spine phenotype that shows a high correlation with LID. These molecular and cellular changes match those occurring in hippocampus and cortex after effective sub-anesthetic ketamine treatment in preclinical models of depression, and point to common mechanisms underlying the therapeutic efficacy of ketamine for these two disorders. These preclinical mechanistic studies complement current ongoing clinical testing of sub-anesthetic ketamine for the treatment of LID by our group, and provide further evidence in support of repurposing ketamine to treat individuals with PD. Given its clinically proven therapeutic benefit for both treatment-resistant depression and several pain states, very common co-morbidities in PD, sub-anesthetic ketamine could provide multiple therapeutic benefits for PD in the future.


Assuntos
Anestésicos Dissociativos/uso terapêutico , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Ketamina/uso terapêutico , Levodopa/efeitos adversos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Depressão/tratamento farmacológico , Depressão/psicologia , Reposicionamento de Medicamentos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/efeitos dos fármacos
5.
Neuropharmacology ; 141: 260-271, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201210

RESUMO

Dopamine (DA)-replacement therapy utilizing l-DOPA is the gold standard symptomatic treatment for Parkinson's disease (PD). A critical complication of this therapy is the development of l-DOPA-induced dyskinesia (LID). The endogenous opioid peptides, including enkephalins and dynorphin, are co-transmitters of dopaminergic, GABAergic, and glutamatergic transmission in the direct and indirect striatal output pathways disrupted in PD, and alterations in expression levels of these peptides and their precursors have been implicated in LID genesis and expression. We have previously shown that the opioid glycopeptide drug MMP-2200 (a.k.a. Lactomorphin), a glycosylated derivative of Leu-enkephalin mediates potent behavioral effects in two rodent models of striatal DA depletion. In this study, the mixed mu-delta agonist MMP-2200 was investigated in standard preclinical rodent models of PD and of LID to evaluate its effects on abnormal involuntary movements (AIMs). MMP-2200 showed antiparkinsonian activity, while increasing l-DOPA-induced limb, axial, and oral (LAO) AIMs by ∼10%, and had no effect on dopamine receptor 1 (D1R)-induced LAO AIMs. In contrast, it markedly reduced dopamine receptor 2 (D2R)-like-induced LAO AIMs. The locomotor AIMs were reduced by MMP-2200 in all three conditions. The N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 has previously been shown to be anti-dyskinetic, but only at doses that induce parkinsonism. When MMP-2200 was co-administered with MK-801, MK-801-induced pro-parkinsonian activity was suppressed, while a robust anti-dyskinetic effect remained. In summary, the opioid glycopeptide MMP-2200 reduced AIMs induced by a D2R-like agonist, and MMP-2200 modified the effect of MK-801 to result in a potent reduction of l-DOPA-induced AIMs without induction of parkinsonism.


Assuntos
Benzazepinas/farmacologia , Discinesia Induzida por Medicamentos/prevenção & controle , Glicopeptídeos/farmacologia , Levodopa/efeitos adversos , Doença de Parkinson Secundária/prevenção & controle , Quimpirol/antagonistas & inibidores , Animais , Antiparkinsonianos/farmacologia , Benzazepinas/antagonistas & inibidores , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Sinergismo Farmacológico , Levodopa/antagonistas & inibidores , Masculino , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Quimpirol/farmacologia , Ratos
6.
Front Neurosci ; 11: 737, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379409

RESUMO

The discovery of biomarkers for Parkinson's disease (PD) is challenging due to the heterogeneous nature of this disorder, and a poor correlation between the underlying pathology and the clinically expressed phenotype. An ideal biomarker would inform on PD-relevant pathological changes via an easily assayed biological characteristic, which reliably tracks clinical symptoms. Human dermal (skin) fibroblasts are accessible peripheral cells that constitute a patient-specific system, which potentially recapitulates the PD chronological and epigenetic aging history. Here, we compared primary skin fibroblasts obtained from individuals diagnosed with late-onset sporadic PD, and healthy age-matched controls. These fibroblasts were studied from fundamental viewpoints of growth and morphology, as well as redox, mitochondrial, and autophagic function. It was observed that fibroblasts from PD subjects had higher growth rates, and appeared distinctly different in terms of morphology and spatial organization in culture, compared to control cells. It was also found that the PD fibroblasts exhibited significantly compromised mitochondrial structure and function when assessed via morphological and oxidative phosphorylation assays. Additionally, a striking increase in baseline macroautophagy levels was seen in cells from PD subjects. Exposure of the skin fibroblasts to physiologically relevant stress, specifically ultraviolet irradiation (UVA), further exaggerated the autophagic dysfunction in the PD cells. Moreover, the PD fibroblasts accumulated higher levels of reactive oxygen species (ROS) coupled with lower cell viability upon UVA treatment. In essence, these studies highlight primary skin fibroblasts as a patient-relevant model that captures fundamental PD molecular mechanisms, and supports their potential utility to develop diagnostic and prognostic biomarkers for the disease.

7.
Regen Med ; 10(5): 563-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237701

RESUMO

AIM: Here we investigated the neuroprotective potential of systemic CD34(+) human cord blood cells (hCBCs) in a 6-hydroxydopamine rat model of Parkinson's disease. METHODS: Purified CD34(+) hCBCs were intravenously administered to rats subjected to 6-hydroxydopamine 24 h earlier, and behavioral and immunohistological analysis performed. RESULTS: CD34(+) hCBC administration significantly prevented host nigrostriatal degeneration inducing behavioral recovery in treated rats. Although donor hCBCs did not differentiate into neural phenotypes, they stimulated the production of new neuroblasts and angiogenesis, and reduced gliosis in recipient animals. Importantly, surviving donor hCBCs were identified, and their tissue distribution pattern correlated with the observed therapeutic effects. CONCLUSION: Peripherally applied CD34(+) hCBCs can migrate into brain tissues and elicit host-based protective mechanisms to support the survival of midbrain dopamine neurons.


Assuntos
Antígenos CD34/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Sangue Fetal/citologia , Doença de Parkinson/terapia , Animais , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Modelos Animais de Doenças , Dopamina/química , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Mesencéfalo/citologia , Neovascularização Patológica , Degeneração Neural/patologia , Neurônios/citologia , Oxidopamina/química , Fenótipo , Ratos , Ratos Endogâmicos F344 , Células-Tronco/citologia , Substância Negra/citologia , Distribuição Tecidual
8.
Neurosci Lett ; 564: 48-52, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24525249

RESUMO

Dopamine-replacement therapy with l-DOPA is still the gold standard treatment for Parkinson's disease (PD). One drawback is the common development of l-DOPA-induced dyskinesia (LID) in patients, which can be as disabling as the disease itself. There is no satisfactory adjunct therapy available. Glutamatergic transmission in the basal ganglia circuitry has been shown to be an important player in the development of LID. The N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 has previously been shown to reduce l-DOPA-induced abnormal involuntary movements (AIMs) in a rat preclinical model but only at concentrations that worsen parkinsonism. We investigated the contribution of the direct and indirect striatofugal pathways to these effects. In the direct pathway, dopamine D1 receptors (D1R) are expressed, whereas in the indirect pathway, dopamine D2 receptors (D2R) are expressed. We used the 6-hydroxydopamine-lesioned hemi-parkinsonian rat model initially primed with l-DOPA to induce dyskinesia. When the rats were then primed and probed with the D1R agonist SKF81297, co-injection of MK-801 worsened the D1R-induced limb, axial, and orolingual (LAO) AIMs by 18% (predominantly dystonic axial AIMs) but did not aggravate parkinsonian hypokinesia as reflected by a surrogate measure of ipsiversive rotations in this model. In contrast, when the rats were then primed and probed with the D2R agonist quinpirole, co-injection of MK-801 reduced D2R-induced LAO AIMs by 89% while inducing ipsiversive rotations. The data show that only inhibition of the indirect striatopallidal pathway is sufficient for the full anti-dyskinetic/pro-parkinsonian effects of the NMDA receptor antagonist MK-801, and that MK-801 modestly worsens dyskinesias that are due to activation of the direct striatonigral pathway alone. This differential activation of the glutamatergic systems in D1R- and D2R-mediated responses is relevant to current therapy for PD which generally includes a mixture of dopamine agonists and l-DOPA.


Assuntos
Maleato de Dizocilpina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA