Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454775

RESUMO

Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.

3.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-33537121

RESUMO

This editorial summarises the organisation, activities, and scientific content of the 6th European Student Council Symposium (ESCS) organised by the International Society for Computational Biology Student Council (ISCB-SC). The event was held on September 6, 2020, as a satellite event preceding the ISCB's  19th European Conference in Computational Biology. Both events were first planned to be held in-person in Sitges, Spain, but moved virtually as a strategy to face the SARS-CoV2 sanitary crisis. This completely unforeseen situation has posed several challenges that have been successfully addressed thanks to the robust ISCB Student Council community structure and the strong commitment of the organisers. Despite all the obstacles and challenges, we have found that virtuality has several advantages that can continue to be kept to improve in-person meetings in the future and make conferences more inclusive allowing a larger audience to participate.


Assuntos
COVID-19 , RNA Viral , Biologia Computacional , Humanos , SARS-CoV-2 , Estudantes
4.
Microorganisms ; 8(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046254

RESUMO

Heavy metal pollution has become an environmental and health problem worldwide. With the aim of finding novel strategies for metal bioremediation, endophytic fungi from the heavy metal hyperaccumulator plant Vachellia farnesiana were isolated and characterized. The plants were growing in mine tailings, rich in Zn, Pb, and Cu. Morphological and phylogenetic analyses indicated that the fungal strains belonged to Neocosmospora and Aspergillus genera. The Neocosmospora isolate belongs to the Fusarium solani species complex (FSSC) that groups phytopathogen species. However, in this case the plants from which it was isolated did not show any signs of disease. Both fungal strains were able to remove significant amounts of heavy metals from liquid cultures, either in a mixture of the three metals or each metal in a single culture. In response to lead exposure, the Neocosmospora sp. strain secreted specific novel phenolic compounds other than anthraquinones or naphtoquinones, which have been described in similar situations. The Aspergillus sp. dropped the pH in the medium. High-performance liquid chromatography determinations indicated that this strain secreted mainly glutamic acid in response to lead, a novel mechanism, which has not been reported elsewhere. Malic and succinic acids were also produced in response to lead exposure. Possibly, glutamic and succinic acids (synthesized in the Krebs cycle) can be used to cope with metal toxicity due to the plant providing photosynthates to the fungus. These fungi showed the potential to be used for bioremediation or restoration of metal-polluted environments.

5.
J Ethnopharmacol ; 208: 264-329, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27155134

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: We provide an extensive summary of the in vitro antibacterial properties of medicinal plants popularly used in Mexico to treat infections, and we discuss the ethnomedical information that has been published for these species. MATERIALS AND METHODS: We carried out a bibliographic investigation by analyzing local and international peer-reviewed papers selected by consulting internationally accepted scientific databases from 1995 to 2014. We provide specific information about the evaluated plant parts, the type of extracts, the tested bacterial strains, and the inhibitory concentrations for each one of the species. We recorded the ethnomedical information for the active species, as well as their popular names and local distribution. Information about the plant compounds that has been identified is included in the manuscript. This review also incorporates an extensive summary of the available toxicological reports on the recorded species, as well as the worldwide registries of plant patents used for treating bacterial infections. In addition, we provide a list with the top plant species with antibacterial activities in this review RESULTS: We documented the in vitro antibacterial activities of 343 plant species pertaining to 92 botanical families against 72 bacterial species, focusing particularly on Staphylococcus aureus, Mycobacterium tuberculosis, Escherichia coli and Pseudomonas aeruginosa. The plant families Asteraceae, Fabaceae, Lamiaceae and Euphorbiaceae included the largest number of active species. Information related to popular uses reveals that the majority of the plants, in addition to treating infections, are used to treat other conditions. The distribution of Mexican plants extended from those that were reported to grow in just one state to those that grow in all 32 Mexican states. From 75 plant species, 225 compounds were identified. Out of the total plant species, only 140 (40.57%) had at least one report about their toxic effects. From 1994 to July 2014 a total of 11,836 worldwide antibacterial patents prepared from different sources were recorded; only 36 antibacterial patents from plants were registered over the same time period. We offered some insights on the most important findings regarding the antibacterial effects, current state of the art, and research perspectives of top plant species with antibacterial activities in vitro. CONCLUSIONS: Studies of the antibacterial in vitro activity of medicinal plants popularly used in Mexico to treat infections indicate that both the selection of plant material and the investigation methodologies vary. Standardized experimental procedures as well as in vivo pharmacokinetic studies to document the effectiveness of plant extracts and compounds are necessary. This review presents extensive information about the medicinal plants possessing antibacterial activity that has been scientifically studied and are popularly used in Mexico. We anticipate that this review will be of use for future studies because it constitutes a valuable information tool for selecting the most significant plants and their potential antibacterial properties.


Assuntos
Antibacterianos , Plantas Medicinais , Animais , Antibacterianos/uso terapêutico , Antibacterianos/toxicidade , Humanos , Medicina Tradicional , México , Patentes como Assunto , Plantas Medicinais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA