Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 1097, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25496002

RESUMO

BACKGROUND: Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome. RESULTS: Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F). CONCLUSIONS: This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.


Assuntos
Replicação do DNA , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Drosophila/genética , Drosophila/microbiologia , Transferência Genética Horizontal , Wolbachia/genética , Animais , Mapeamento Cromossômico , Feminino , Dosagem de Genes , Genoma de Inseto/genética , Heterozigoto , Masculino , Cromossomos Politênicos/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose
2.
BMC Genomics ; 15: 738, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168586

RESUMO

BACKGROUND: Halyomorpha halys (Stål) (Insecta:Hemiptera;Pentatomidae), commonly known as the Brown Marmorated Stink Bug (BMSB), is an invasive pest of the mid-Atlantic region of the United States, causing economically important damage to a wide range of crops. Native to Asia, BMSB was first observed in Allentown, PA, USA, in 1996, and this pest is now well-established throughout the US mid-Atlantic region and beyond. In addition to the serious threat BMSB poses to agriculture, BMSB has become a nuisance to homeowners, invading home gardens and congregating in large numbers in human-made structures, including homes, to overwinter. Despite its significance as an agricultural pest with limited control options, only 100 bp of BMSB sequence data was available in public databases when this project began. RESULTS: Transcriptome sequencing was undertaken to provide a molecular resource to the research community to inform the development of pest control strategies and to provide molecular data for population genetics studies of BMSB. Using normalized, strand-specific libraries, we sequenced pools of all BMSB life stages on the Illumina HiSeq. Trinity was used to assemble 200,000 putative transcripts in >100,000 components. A novel bioinformatic method that analyzed the strand-specificity of the data reduced this to 53,071 putative transcripts from 18,573 components. By integrating multiple other data types, we narrowed this further to 13,211 representative transcripts. CONCLUSIONS: Bacterial endosymbiont genes were identified in this dataset, some of which have a copy number consistent with being lateral gene transfers between endosymbiont genomes and Hemiptera, including ankyrin-repeat related proteins, lysozyme, and mannanase. Such genes and endosymbionts may provide novel targets for BMSB-specific biocontrol. This study demonstrates the utility of strand-specific sequencing in generating shotgun transcriptomes and that rapid sequencing shotgun transcriptomes is possible without the need for extensive inbreeding to generate homozygous lines. Such sequencing can provide a rapid response to pest invasions similar to that already described for disease epidemiology.


Assuntos
Perfilação da Expressão Gênica/métodos , Heterópteros/genética , Proteínas de Insetos/genética , Análise de Sequência de RNA/métodos , Animais , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional/métodos , Feminino , Transferência Genética Horizontal , Heterópteros/microbiologia , Espécies Introduzidas , Masculino , Dados de Sequência Molecular , Filogenia , Simbiose
3.
Sci Transl Med ; 11(521)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801883

RESUMO

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Sistemas Neurossecretores/patologia , Fenótipo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Microambiente Tumoral
4.
BMC Res Notes ; 5: 230, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583543

RESUMO

BACKGROUND: Numerous methods exist for enriching bacterial or mammalian mRNA prior to transcriptome experiments. Yet there persists a need for methods to enrich for mRNA in non-mammalian animal systems. For example, insects contain many important and interesting obligate intracellular bacteria, including endosymbionts and vector-borne pathogens. Such obligate intracellular bacteria are difficult to study by traditional methods. Therefore, genomics has greatly increased our understanding of these bacteria. Efficient subtraction methods are needed for removing both bacteria and insect rRNA in these systems to enable transcriptome-based studies. FINDINGS: A method is described that efficiently removes >95% of insect rRNA from total RNA samples, as determined by microfluidics and transcriptome sequencing. This subtraction yielded a 6.2-fold increase in mRNA abundance. Such a host rRNA-depletion strategy, in combination with bacterial rRNA depletion, is necessary to analyze transcription of obligate intracellular bacteria. Here, transcripts were identified that arise from a lateral gene transfer of an entire Wolbachia bacterial genome into a Drosophila ananassae chromosome. In this case, an rRNA depletion strategy is preferred over polyA-based enrichment since transcripts arising from bacteria-to-animal lateral gene transfer may not be poly-adenylated. CONCLUSIONS: This enrichment method yields a significant increase in mRNA abundance when poly-A selection is not suitable. It can be used in combination with bacterial rRNA subtraction to enable experiments to simultaneously measure bacteria and insect mRNA in vector and endosymbiont biology experiments.


Assuntos
Drosophila/genética , Drosophila/microbiologia , Perfilação da Expressão Gênica/métodos , Transferência Genética Horizontal/genética , RNA Ribossômico 18S/isolamento & purificação , Wolbachia/genética , Actinas/genética , Animais , Genes de Insetos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA