RESUMO
BACKGROUND: The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. METHODS: Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989-2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. RESULTS: Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76-27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98-67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5-10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5-10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5-10 years after the diagnosis. CONCLUSIONS: Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy.
Assuntos
Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Teorema de Bayes , Neoplasias Ósseas/genética , Cardiotoxicidade , Criança , Pré-Escolar , Citocromo P-450 CYP3A/genética , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Osteossarcoma/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
PURPOSE: Several lines of evidence indicate that the Hippo/Yes-associated protein 1 (YAP1) pathways might play a role in the pathogenesis of asthma. To investigate the possible role of the Hippo/YAP1 pathway in the pathogenesis of asthma or its phenotypes. METHODS: The levels of gene expressions of the members of the Hippo/YAP1 were compared. The presence of the proteins of the YAP1 and FRMD6 were analyzed with Western blot in induced sputum of 18 asthmatic subjects and 10 control subjects. Fourteen single nucleotide polymorphisms (SNPs) in the YAP1 gene were genotyped in 522 asthmatic subjects and 711 healthy controls. The results were evaluated with traditional frequentist methods and with Bayesian network-based Bayesian multilevel analysis of relevance (BN-BMLA). RESULTS: The mRNA of all the members of the Hippo/YAP1 pathway could be detected in the induced sputum of both controls and cases. A correlation was found between YAP1 mRNA levels and sputum bronchial epithelial cells (r=0.575, P=0.003). The signal for the FRMD6 protein could be detected in all sputum samples while the YAP1 protein could not be detected in the sputum samples, of the healthy controls and severe asthmatics, but it was detectable in mild asthmatics. The rs2846836 SNP of the YAP1 gene was significantly associated with exercise-induced asthma (odds ratio [OR]=2.1 [1.3-3.4]; P=0.004). The distribution of genotypes of rs11225138 and certain haplotypes of the YAP1 gene showed significant differences between different asthma severity statuses. With BN-BMLA, 2 SNPs, genetic variations in the FRMD6 gene proved to be the most relevant to exercise-induced asthma and allergic rhinitis. These 2 SNPs through allergic rhinitis and exercise-induced asthma were in epistatic interaction with each other. CONCLUSIONS: Our results provided additional evidence that the FRMD6/Hippo/YAP1 pathway plays a role in the pathogenesis of asthma. If additional studies can confirm these findings, this pathway can be a potential novel therapeutic target in asthma and other inflammatory airway diseases.
RESUMO
Anthracyclines constitute a fundamental part of the chemotherapy regimens utilized to treat a number of different malignancies both in pediatric and adult patients. These drugs are one of the most efficacious anticancer agents ever invented. On the other hand, anthracyclines are cardiotoxic. Childhood cancer survivors treated with anthracyclines often undergo cardiac complications which are influenced by genetic variations of the patients. The scientific literature comprises numerous investigations in the subject of the pharmacogenetics of anthracyclines. In this review, we provide a comprehensive overview of this research topic. Genetic variants are proposed targets in the personalized treatment in order to individualize dosing and therefore reduce side effects.
Assuntos
Antraciclinas/uso terapêutico , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacogenética , Animais , Antraciclinas/farmacocinética , Antibióticos Antineoplásicos/farmacocinética , HumanosRESUMO
PURPOSE: Based on a previous gene expression study in a mouse model of asthma, we selected 60 candidate genes and investigated their possible roles in human asthma. METHODS: In these candidate genes, 90 SNPs were genotyped using MassARRAY technology from 311 asthmatic children and 360 healthy controls of the Hungarian (Caucasian) population. Moreover, gene expression levels were measured by RT PCR in the induced sputum of 13 asthmatics and 10 control individuals. t-tests, chi-square tests, and logistic regression were carried out in order to assess associations of SNP frequency and expression level with asthma. Permutation tests were performed to account for multiple hypothesis testing. RESULTS: The frequency of 4 SNPs in 2 genes differed significantly between asthmatic and control subjects: SNPs rs2240572, rs2240571, rs3735222 in gene SCIN, and rs32588 in gene PPARGC1B. Carriers of the minor alleles had reduced risk of asthma with an odds ratio of 0.64 (0.51-0.80; P=7×10(-5)) in SCIN and 0.56 (0.42-0.76; P=1.2×10(-4)) in PPARGC1B. The expression levels of SCIN, PPARGC1B and ITLN1 genes were significantly lower in the sputum of asthmatics. CONCLUSIONS: Three potentially novel asthma-associated genes were identified based on mouse experiments and human studies.