Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(8): 891-904, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847298

RESUMO

Interspecific variation in body size is one of the most popular topics in comparative studies. Despite recent advances, little is known about the patterns and processes behind the evolution of body size in insects. Here, we used a robust data set comprising all geometrid moth species occurring in Northern Europe to examine the evolutionary associations involving body size and several life-history traits under an explicitly phylogenetic framework. We provided new insights into the interactive effects of life-history traits on body size and evidence of correlated evolution. We further established the sequence of trait evolution linking body size with the life-history traits correlated with it. We found that most (but not all) of the studied life-history traits, to some extent, influenced interspecific variation in body size, but interactive effects were uncommon. Both bi- and multivariate phylogenetic analyses indicated that larger species tend to be nocturnal flyers, overwinter in the larval stage, feed on the foliage of trees rather than herbs, and have a generalist feeding behaviour. We found evidence of correlated evolution involving body size with overwintering stage, host-plant growth form, and dietary specialization. The examination of evolutionary transitions within the correlated evolution models signalled that overwintering as larvae commonly preceded the evolution of large sizes, as did feeding on tree foliage and the generalist feeding behaviour. By showing that both body size and all life-history traits correlated with it evolve at very slow rates, we caution against uncritical attempts to propose causal explanations for respective associations based on contemporary ecological settings.


Assuntos
Evolução Biológica , Tamanho Corporal , Mariposas , Filogenia , Animais , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/genética , Mariposas/anatomia & histologia , Comportamento Alimentar , Características de História de Vida
2.
Ecol Evol ; 14(6): e11522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835519

RESUMO

The spatial arrangement of organisms is significantly influenced by the structure of vegetation. Bromeliads, characterized by a remarkable architectural design featuring rosette-like leaf arrangements for rainwater storage, act as habitats for various organisms. These organisms use bromeliads for shelter, foraging, reproduction and the supply of nutrients and moisture. This study investigated how specific aspects of bromeliad structure, such as the number, width and length of leaves, impact the behaviour and distribution patterns of the bromelicolous scorpion Tityus neglectus. In the examination of 110 sampled bromeliads, 33 scorpions were recorded, resulting in an occupancy rate of 30%. The likelihood of scorpion occurrence was associated with the plant's structure. The length and coefficient of variation in the width of leaves appeared as the main predictors, positively influencing scorpion presence while the number of leaves exhibited a negative relation with scorpion occurrence. The distribution of scorpions was uniform across the spatial design of bromeliads. Furthermore, T. neglectus demonstrated the ability to utilize water accumulated in the bromeliad to evade potential predators, submerging itself for, on mean, almost 8 min. We concluded that bromeliad structure is essential in shaping the distribution patterns and anti-predatory behaviour of T. neglectus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA