Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Environ Microbiol ; 21(1): 456-470, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452102

RESUMO

The genus Mesotoga, the only described mesophilic Thermotogae lineage, is common in mesothermic anaerobic hydrocarbon-rich environments. Besides mesophily, Mesotoga displays lineage-specific phenotypes, such as no or little H2 production and dependence on sulfur-compound reduction, which may influence its ecological role. We used comparative genomics of 18 Mesotoga strains (pairwise 16S rRNA identity >99%) and a transcriptome of M. prima to investigate how life at moderate temperatures affects phylogeography and to interrogate the genomic features of its lineage-specific metabolism. We propose that Mesotoga accomplish H2 oxidation and thiosulfate reduction using a sulfide dehydrogenase and a hydrogenase-complex and that a pyruvate:ferredoxin oxidoreductase acquired from Clostridia is responsible for oxidizing acetate. Phylogenetic analysis revealed three distinct Mesotoga lineages (89.6%-99.9% average nucleotide identity [ANI] within lineages, 79.3%-87.6% ANI between lineages) having different geographic distribution patterns and high levels of intra-lineage recombination but little geneflow between lineages. Including data from metagenomes, phylogeographic patterns suggest that geographical separation historically has been more important for Mesotoga than hyperthermophilic Thermotoga and we hypothesize that distribution of Mesotoga is constrained by their anaerobic lifestyle. Our data also suggest that recent anthropogenic activities and environments (e.g., wastewater treatment, oil exploration) have expanded Mesotoga habitats and dispersal capabilities.


Assuntos
Bactérias/genética , Genoma Bacteriano/genética , Filogeografia , Acetatos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/isolamento & purificação , Ecossistema , Genômica , Hidrogênio/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Filogenia , Piruvato Sintase/genética , RNA Ribossômico 16S/genética , Tiossulfatos/metabolismo , Xilose/metabolismo
2.
Extremophiles ; 21(6): 963-979, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894932

RESUMO

Temperature is one of the defining parameters of an ecological niche. Most organisms thrive within a temperature range that rarely exceeds ~30 °C, but the deep subsurface bacterium Kosmotoga olearia can grow over a temperature range of 59 °C (20-79 °C). To identify genes correlated with this flexible phenotype, we compared transcriptomes of K. olearia cultures grown at its optimal 65 °C to those at 30, 40, and 77 °C. The temperature treatments affected expression of 573 of 2224 K. olearia genes. Notably, this transcriptional response elicits re-modeling of the cellular membrane and changes in metabolism, with increased expression of genes involved in energy and carbohydrate metabolism at high temperatures and up-regulation of amino acid metabolism at lower temperatures. At sub-optimal temperatures, many transcriptional changes were similar to those observed in mesophilic bacteria at physiologically low temperatures, including up-regulation of typical cold stress genes and ribosomal proteins. Comparative genomic analysis of additional Thermotogae genomes indicates that one of K. olearia's strategies for low-temperature growth is increased copy number of some typical cold response genes through duplication and/or lateral acquisition. At 77 °C one-third of the up-regulated genes are of hypothetical function, indicating that many features of high-temperature growth are unknown.


Assuntos
Genoma Bacteriano , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Resposta ao Choque Térmico , Transcriptoma , Aclimatação , Regulação Bacteriana da Expressão Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo
3.
J Eukaryot Microbiol ; 63(6): 732-743, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27062087

RESUMO

Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands.


Assuntos
Eucariotos/genética , Eucariotos/isolamento & purificação , Sedimentos Geológicos/parasitologia , Lagoas/parasitologia , Biodiversidade , Eucariotos/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Campos de Petróleo e Gás , Filogenia
4.
Environ Microbiol ; 17(12): 4898-915, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25331365

RESUMO

Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate.


Assuntos
Alcanos/metabolismo , Biodegradação Ambiental , Euryarchaeota/metabolismo , Peptococcaceae/metabolismo , Petróleo/metabolismo , Alcanos/química , Carbono/metabolismo , Euryarchaeota/genética , Metano/metabolismo , Campos de Petróleo e Gás , Peptococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética
5.
Environ Sci Technol ; 49(24): 14732-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26571341

RESUMO

iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.


Assuntos
Alcanos/metabolismo , Consórcios Microbianos/fisiologia , Campos de Petróleo e Gás/microbiologia , Alcanos/química , Biodegradação Ambiental , Hexanos/metabolismo , Metano/metabolismo , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Consórcios Microbianos/genética , Pentanos/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Petróleo/metabolismo , RNA Ribossômico 16S/genética
6.
J Environ Qual ; 44(1): 145-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602329

RESUMO

Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies.

7.
Chemosphere ; 349: 140900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065261

RESUMO

Management of growing volumes of fluid fine tailings (FFT) is a significant challenge for oil sands industry. A potential alternative non-aqueous solvent extraction (NAE) process uses cycloalkane solvent such as cyclohexane or cyclopentane with very little water and generates smaller volumes of 'dry' solids (NAES) with residual solvent. Here we investigate remediation of NAES in a simulated bench-scale upland reclamation scenario. In the first study, microcosms with nutrient medium plus FFT as inoculum were amended with cyclohexane and incubated for ∼1 year, monitoring for cyclohexane biodegradation under aerobic conditions. Biodegradation of cyclohexane occurred under aerobic conditions with no metabolic intermediates detected. A second study using NAES mixed with FFT spiked with cyclohexane and cyclopentane, with or without additional nutrients (nitrogen and phosphorus), showed complete and rapid aerobic biodegradation of both cycloalkanes in NAES inoculated with FFT and supplemented with nutrients. 16S rRNA gene sequencing revealed dominance of Rhodoferax and members of Burkholderiaceae during aerobic cyclohexane biodegradation in FFT, and Hydrogenophaga, Acidovorax, Defluviimonas and members of Porticoccaceae during aerobic biodegradation of cyclohexane and cyclopentane in NAES inoculated with FFT and supplemented with nutrients. The findings indicate that biodegradation of cycloalkanes from NAES is possible under aerobic condition, which will contribute to the successful reclamation of oil sands tailings for land closure.


Assuntos
Cicloparafinas , Campos de Petróleo e Gás , RNA Ribossômico 16S , Cicloexanos , Ciclopentanos , Biodegradação Ambiental , Solventes
8.
Genome ; 56(10): 599-611, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24237341

RESUMO

A microbial community (short-chain alkane-degrading culture, SCADC) enriched from an oil sands tailings pond was shown to degrade C6-C10 alkanes under methanogenic conditions. Total genomic DNA from SCADC was subjected to 454 pyrosequencing, Illumina paired-end sequencing, and 16S rRNA amplicon pyrotag sequencing; the latter revealed 320 operational taxonomic units at 5% distance. Metagenomic sequences were subjected to in-house quality control and co-assembly, yielding 984 086 contigs, and annotation using MG-Rast and IMG. Substantial nucleotide and protein recruitment to Methanosaeta concilii, Syntrophus aciditrophicus, and Desulfobulbus propionicus reference genomes suggested the presence of closely related strains in SCADC; other genomes were not well mapped, reflecting the paucity of suitable reference sequences for such communities. Nonetheless, we detected numerous homologues of putative hydrocarbon succinate synthase genes (e.g., assA, bssA, and nmsA) implicated in anaerobic hydrocarbon degradation, suggesting the ability of the SCADC microbial community to initiate methanogenic alkane degradation by addition to fumarate. Annotation of a large contig revealed analogues of the ass operon 1 in the alkane-degrading sulphate-reducing bacterium Desulfatibacillum alkenivorans AK-01. Despite being enriched under methanogenic-fermentative conditions, additional metabolic functions inferred by COG profiling indicated multiple CO(2) fixation pathways, organic acid utilization, hydrogenase activity, and sulphate reduction.


Assuntos
Alcanos/metabolismo , Bactérias Anaeróbias/genética , Euryarchaeota/genética , Hidrocarbonetos/metabolismo , Metagenoma , Campos de Petróleo e Gás/microbiologia , Anaerobiose , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Biologia Computacional , Euryarchaeota/metabolismo , Genes Arqueais , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Óperon , Filogenia , RNA Ribossômico 16S/genética , Transdução de Sinais
9.
Environ Sci Technol ; 47(18): 10708-17, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23889694

RESUMO

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes.


Assuntos
Archaea/genética , Bactérias/genética , Campos de Petróleo e Gás/microbiologia , RNA Arqueal/genética , Aerobiose , Alberta , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Genes Arqueais , Genes Bacterianos , Hidrocarbonetos/metabolismo , Metagenômica , RNA Arqueal/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
10.
Appl Microbiol Biotechnol ; 97(6): 2587-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22940805

RESUMO

The EmhABC efflux pump in Pseudomonas fluorescens LP6a effluxes polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene and anthracene but not naphthalene. We previously showed that the presence of EmhABC decreased the efficiency of phenanthrene biodegradation. In this study, we determined whether P. fluorescens LP6a tolerance to naphthalene is a function of the EmhABC efflux pump and how its presence affects the efficiency of naphthalene biodegradation. Growth, membrane fatty acid (FA) composition, and cell morphology showed that 5-mmol L(-1) naphthalene is inhibitory to P. fluorescens LP6a strains. The deleterious effect of naphthalene is suppressed in the presence of EmhABC, which suggests that, although naphthalene is not effluxed by EmhABC, this efflux pump is involved in tolerance of naphthalene toxicity. LP6a mutants lacking the EmhB efflux pump were unable to convert cis-unsaturated FAs to cyclopropane FAs, indicating that naphthalene interferes with the formation of cyclopropane FAs and supporting the proposal that EmhABC is involved in FA turnover in P. fluorescens LP6a strains. The EmhABC efflux pump increases the efficiency of naphthalene metabolism in strain LP6a, which may make naphthalene efflux unnecessary. Thus, the activity of hydrocarbon efflux pumps may be an important factor to consider when selecting bacterial strains for bioremediation or biocatalysis of PAHs.


Assuntos
Antibacterianos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Naftalenos/metabolismo , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/metabolismo , Transporte Biológico Ativo , Biotransformação , Ácidos Graxos/metabolismo , Deleção de Genes , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crescimento & desenvolvimento
11.
Extremophiles ; 16(3): 387-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22411358

RESUMO

A novel mesophilic member of the Thermotogales, strain MesG1.Ag.4.2, was isolated from sediments from Baltimore Harbor, MD, USA. The strain grew optimally at 37 °C with a doubling time of 16.5 h on xylose. Carbohydrates and proteinaceous compounds supported growth and pentoses were preferred over hexoses. The strain was strictly anaerobic and growth was slightly stimulated by thiosulfate, sulfite, and elemental sulfur. The G + C content of its genomic DNA was 45.3 mol%. Strain MesG1.Ag.4.2 and Kosmotoga olearia lipids were analyzed. Strain MesG1.Ag.4.2 contained no long-chain dicarboxylic acids and its major phospholipid was lyso-phosphatidylserine. Long-chain dicarboxylic acids were found in K. olearia and its major phospholipid was cardiolipin, a lipid not yet reported in Thermotogales species. Phylogenetic analyses of its two 16S rRNA genes placed strain MesG1.Ag.4.2 within the bacterial order Thermotogales. Based on the phylogenetic analyses and its low optimal growth temperature, it is proposed that the strain represents a novel species of a new genus within the family Thermotogaceae, order Thermotogales. The name Mesotoga prima gen. nov., sp. nov. is proposed. The type strain of M. prima is MesG1.Ag.4.2 (= DSM 24739 = ATCC BAA-2239).


Assuntos
Composição de Bases , DNA Bacteriano/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Baltimore , Sequência de Bases , Cardiolipinas/genética , Cardiolipinas/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/isolamento & purificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Hexoses/metabolismo , Metabolismo dos Lipídeos/fisiologia , Dados de Sequência Molecular , Pentoses/metabolismo , Microbiologia da Água
12.
Environ Sci Technol ; 46(17): 9802-10, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22894132

RESUMO

Microbial metabolism of residual hydrocarbons, primarily short-chain n-alkanes and certain monoaromatic hydrocarbons, in oil sands tailings ponds produces large volumes of CH(4) in situ. We characterized the microbial communities involved in methanogenic biodegradation of whole naphtha (a bitumen extraction solvent) and its short-chain n-alkane (C(6)-C(10)) and BTEX (benzene, toluene, ethylbenzene, and xylenes) components using primary enrichment cultures derived from oil sands tailings. Clone libraries of bacterial 16S rRNA genes amplified from these enrichments showed increased proportions of two orders of Bacteria: Clostridiales and Syntrophobacterales, with Desulfotomaculum and Syntrophus/Smithella as the closest named relatives, respectively. In parallel archaeal clone libraries, sequences affiliated with cultivated acetoclastic methanogens (Methanosaetaceae) were enriched in cultures amended with n-alkanes, whereas hydrogenotrophic methanogens (Methanomicrobiales) were enriched with BTEX. Naphtha-amended cultures harbored a blend of these two archaeal communities. The results imply syntrophic oxidation of hydrocarbons in oil sands tailings, with the activities of different carbon flow pathways to CH(4) being influenced by the primary hydrocarbon substrate. These results have implications for predicting greenhouse gas emissions from oil sands tailings repositories.


Assuntos
Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Metano/metabolismo , Alcanos/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação
13.
Appl Microbiol Biotechnol ; 95(3): 757-66, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22361858

RESUMO

Pseudomonas fluorescens strain LP6a, designated here as strain WEN (wild-type PAH catabolism, efflux positive), utilizes the polycyclic aromatic hydrocarbon phenanthrene as a carbon source but also extrudes it into the extracellular medium using the efflux pump EmhABC. Because phenanthrene is considered a nontoxic carbon source for P. fluorescens WEP, its energy-dependent efflux seems counter-productive. We hypothesized that the efflux of phenanthrene would decrease the efficiency of its biodegradation. Indeed, an emhB disruptant strain, wild-type PAH catabolism, efflux negative (WEN), biodegraded 44% more phenanthrene than its parent strain WEP during a 6-day incubation. To determine whether efflux affected the degree of oxidation of phenanthrene, we quantified the conversion of ¹4C-phenanthrene to radiolabeled polar metabolites and ¹4CO2. The emhB⁻ WEN strain produced approximately twice as much ¹4CO2 and radiolabeled water-soluble metabolites as the WEP strain. In contrast, the mineralization of ¹4C-glucose, which is not a known EmhB efflux substrate, was equivalent in both strains. An early open-ring metabolite of phenanthrene, trans-4-(1-hydroxynaphth-2-yl)-2-oxo-3-butenoic acid, also was found to be a substrate of the EmhABC pump and accumulated in the supernatant of WEP but not WEN cultures. The analogous open-ring metabolite of dibenzothiophene, a heterocyclic analog of phenanthrene, was extruded by EmhABC plus a putative alternative efflux pump, whereas the end product 3-hydroxy-2-formylbenzothiophene was not actively extruded from either WEP or WEN cells. These results indicate that the active efflux of phenanthrene and its early metabolite(s) decreases the efficiency of phenanthrene degradation by the WEP strain. This activity has implications for the bioremediation and biocatalytic transformation of polycyclic aromatic hydrocarbons and heterocycles.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Fenantrenos/metabolismo , Pseudomonas fluorescens/metabolismo , Transporte Biológico Ativo , Radioisótopos de Carbono/metabolismo , Meios de Cultura/química , Deleção de Genes , Proteínas de Membrana Transportadoras/genética
14.
BMC Microbiol ; 11: 252, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085438

RESUMO

BACKGROUND: Efflux pumps belonging to the resistance-nodulation-division (RND) superfamily in bacteria are involved in antibiotic resistance and solvent tolerance but have an unknown physiological role. EmhABC, a RND-type efflux pump in Pseudomonas fluorescens strain cLP6a, extrudes hydrophobic antibiotics, dyes and polycyclic aromatic hydrocarbons including phenanthrene. The effects of physico-chemical factors such as temperature or antibiotics on the activity and expression of EmhABC were determined in order to deduce its physiological role(s) in strain cLP6a in comparison to the emhB disruptant strain, cLP6a-1. RESULTS: Efflux assays conducted with (14)C-phenanthrene showed that EmhABC activity is affected by incubation temperature. Increased phenanthrene efflux was measured in cLP6a cells grown at 10°C and decreased efflux was observed at 35°C compared with cells grown at the optimum temperature of 28°C. Membrane fatty acids in cLP6a cells were substantially altered by changes in growth temperature and in the presence of tetracycline. Changed membrane fatty acids and increased membrane permeability were associated with ~30-fold increased expression of emhABC in cLP6a cells grown at 35°C, and with increased extracellular free fatty acids. Growth of P. fluorescens cLP6a at supra-optimal temperature was enhanced by the presence of EmhABC compared to strain cLP6a-1. CONCLUSIONS: Combined, these observations suggest that the EmhABC efflux pump may be involved in the management of membrane stress effects such as those due to unfavourable incubation temperatures. Efflux of fatty acids replaced as a result of membrane damage or phospholipid turnover may be the primary physiological role of the EmhABC efflux pump in P. fluorescens cLP6a.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Pseudomonas fluorescens/metabolismo , Temperatura , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular , Meios de Cultura , Farmacorresistência Bacteriana Múltipla , Ácidos Graxos/análise , Regulação Bacteriana da Expressão Gênica , Fenantrenos/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crescimento & desenvolvimento
15.
Extremophiles ; 15(1): 45-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21104190

RESUMO

We isolated several Hymenobacter-like strains from Victoria Upper Glacier, Antarctica, basal ice that diverged substantially from currently defined Hymenobacter species according to their 16S rRNA and gyrB gene phylogenies. All strains were psychrotolerant, heterotrophic aerobes which grew preferentially on low salt and low nutrient strength agar. Further phenotypic and chemotaxonomic characterization of these isolates supported their assignment as five novel species: H. algoricola sp. nov., H. antarcticus sp. nov., H. elongatus sp. nov., H. fastidiosus sp. nov., and H. glaciei sp. nov. Remarkable among these data was the prevalence of horizontal gene transfers and phenotypic variation, even between apparently closely related strains. These results suggest extensive non-vertical evolution within the genus Hymenobacter, and may reflect evolutionary trajectories resulting from dormancy, e.g., during interment in glacial ice.


Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , Temperatura Baixa , Evolução Molecular , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Regiões Antárticas , Bactérias/metabolismo
16.
Environ Sci Technol ; 45(13): 5892-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21644510

RESUMO

Extraction of bitumen from mined oil sands ores produces enormous volumes of tailings that are stored in settling basins (current inventory ≥ 840 million m(3)). Our previous studies revealed that certain hydrocarbons (short-chain n-alkanes [C(6)-C(10)] and monoaromatics [toluene, o-xylene, m-xylene]) in residual naphtha entrained in the tailings are biodegraded to CH(4) by a consortium of microorganisms. Here we show that higher molecular weight n-alkanes (C(14), C(16), and C(18)) are also degraded under methanogenic conditions in oil sands tailings, albeit after a lengthy lag (~180 d) before the onset of methanogenesis. Gas chromatographic analyses showed that the longer-chain n-alkanes each added at ~400 mg L(-1) were completely degraded by the resident microorganisms within ~440 d at ~20 °C. 16S rRNA gene sequence analysis of clone libraries implied that the predominant pathway of longer-chain n-alkane metabolism in tailings is through syntrophic oxidation of n-alkanes coupled with CO(2) reduction to CH(4). These studies demonstrating methanogenic biodegradation of longer-chain n-alkanes by microbes native to oil sands tailings may be important for effective management of tailings and greenhouse gas emissions from tailings ponds.


Assuntos
Alcanos/metabolismo , Archaea/genética , Deltaproteobacteria/genética , Metano/biossíntese , Petróleo/metabolismo , Resíduos/análise , Anaerobiose , Archaea/metabolismo , Sequência de Bases , Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Cromatografia Gasosa , Biologia Computacional , Deltaproteobacteria/metabolismo , Hidrocarbonetos , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Appl Microbiol Biotechnol ; 92(4): 653-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21964551

RESUMO

Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase.


Assuntos
Bactérias/metabolismo , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Hidrocarbonetos/metabolismo , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Emulsões
18.
Appl Microbiol Biotechnol ; 92(2): 263-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21858492

RESUMO

Souring in oil field systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be "inoculated" into a reservoir system during oil field development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oil field. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oil field souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oil field operations.


Assuntos
Bactérias/metabolismo , Microbiologia Industrial , Campos de Petróleo e Gás/microbiologia , Petróleo/análise , Bactérias/classificação , Bactérias/isolamento & purificação , Oxirredução , Petróleo/microbiologia , Sulfatos/metabolismo
19.
Appl Microbiol Biotechnol ; 89(6): 2027-38, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21057944

RESUMO

Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production ('souring') caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers (≤10(3) MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5-20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50-60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50-60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is added.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Sulfeto de Hidrogênio/metabolismo , Nitratos/metabolismo , Microbiologia do Solo , Microbiologia da Água , Carga Bacteriana , Canadá , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Poliacrilamida , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Petróleo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Biodegradation ; 22(3): 485-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20886260

RESUMO

Microbial adhesion is an important factor that can influence biodegradation of poorly water soluble hydrocarbons such as phenanthrene. This study examined how adhesion to an oil-water interface, as mediated by 1-dodecanol, enhanced phenanthrene biodegradation by Pseudomonas fluorescens LP6a. Phenanthrene was dissolved in heptamethylnonane and added to the aerobic aqueous growth medium to form a two phase mixture. 1-Dodecanol was non-toxic and furthermore could be biodegraded slowly by this strain. The alcohol promoted adhesion of the bacterial cells to the oil-water interface without significantly changing the interfacial or surface tension. Introducing 1-dodecanol at concentrations from 217 to 4,100 mg l(-1) increased phenanthrene biodegradation by about 30% after 120 h incubation. After 100 h incubation, cultures initially containing 120 or 160 mg l(-1) 1-dodecanol had mineralized >10% of the phenanthrene whereas those incubated without 1-dodecanol had mineralized only 4.5%. The production and accumulation of putative phenanthrene metabolites in the aqueous phase of cultures likewise increased in response to the addition of 1-dodecanol. The results suggest that enhanced adhesion of bacterial cells to the oil-water interface was the main factor responsible for enhanced biodegradation of phenanthrene to presumed polar metabolites and to CO(2).


Assuntos
Aderência Bacteriana , Fenantrenos/metabolismo , Pseudomonas fluorescens/fisiologia , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA