Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Pediatr Blood Cancer ; 68 Suppl 2: e28609, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818891

RESUMO

The Children's Oncology Group (COG) has a strong quality assurance (QA) program managed by the Imaging and Radiation Oncology Core (IROC). This program consists of credentialing centers and providing real-time management of each case for protocol compliant target definition and radiation delivery. In the International Society of Pediatric Oncology (SIOP), the lack of an available, reliable online data platform has been a challenge and the European Society for Paediatric Oncology (SIOPE) quality and excellence in radiotherapy and imaging for children and adolescents with cancer across Europe in clinical trials (QUARTET) program currently provides QA review for prospective clinical trials. The COG and SIOP are fully committed to a QA program that ensures uniform execution of protocol treatments and provides validity of the clinical data used for analysis.


Assuntos
Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia (Especialidade)/normas , Planejamento da Radioterapia Assistida por Computador/normas , Adolescente , Criança , Humanos
2.
Pediatr Blood Cancer ; 67(10): e28629, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776500

RESUMO

This report by the Radiation Oncology Discipline of Children's Oncology Group (COG) describes the practice patterns of pediatric image-guided radiotherapy (IGRT) based on a member survey and provides practice recommendations accordingly. The survey comprised of 11 vignettes asking clinicians about their recommended treatment modalities, IGRT preferences, and frequency of in-room verification. Technical questions asked physicists about imaging protocols, dose reduction, setup correction, and adaptive therapy. In this report, the COG Radiation Oncology Discipline provides an IGRT modality/frequency decision tree and the expert guidelines for the practice of ionizing image guidance in pediatric radiotherapy patients.


Assuntos
Neoplasias/radioterapia , Guias de Prática Clínica como Assunto/normas , Padrões de Prática Médica/normas , Radioterapia (Especialidade)/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Criança , Humanos , Neoplasias/patologia , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 21(7): 70-76, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32351006

RESUMO

PURPOSE: To create a snapshot of common practices for 3D-CRT and intensity-modulated radiation therapy (IMRT) QA through a large-scale survey and compare to TG-218 recommendations. METHODS: A survey of 3D-CRT and IMRT QA was constructed at and distributed by the IROC-Houston QA center to all institutions monitored by IROC (n = 2,861). The first part of the survey asked about methods to check dose delivery for 3D-CRT. The bulk of the survey focused on IMRT QA, inquiring about treatment modalities, standard tools used to verify planned dose, how assessment of agreement is calculated and the comparison criteria used, and the strategies taken if QA fails. RESULTS: The most common tools for dose verification were a 2D diode array (52.8%), point(s) measurement (39.0%), EPID (27.4%), and 2D ion chamber array (23.9%). When IMRT QA failed, the highest average rank strategy utilized was to remeasure with the same setup, which had an average position ranking of 1.1 with 90.4% of facilities employing this strategy. The second highest average ranked strategy was to move to a new calculation point and remeasure (54.9%); this had an average ranking of 2.1. CONCLUSION: The survey provided a snapshot of the current state of dose verification for IMRT radiotherapy. The results showed variability in approaches and that work is still needed to unify and tighten criteria in the medical physics community, especially in reference to TG-218's recommendations.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
J Appl Clin Med Phys ; 21(8): 120-130, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506820

RESUMO

Dental amalgams are a common source of artifacts in head and neck (HN) images. Commercial artifact reduction techniques have been offered, but are substantially ineffectual at reducing artifacts from dental amalgams, can produce additional artifacts, provide inaccurate HU information, or require extensive computation time, and thus offer limited clinically utility. The goal of this work was to define and validate a novel algorithm and provide a phantom-based testing as proof of principle. An initial clinical comparison to a vendor's current solution was also performed. The algorithm uses two-angled CT scans in order to generate a single image set with minimal artifacts posterior to the metal implants. The algorithm was evaluated using a phantom simulating a HN patient with dental fillings. Baseline (no artifacts) geometrical measurements of the phantom were taken in the anterior-posterior, left-right, and superior-inferior directions and compared to the metal-corrected images using our algorithm to evaluate possible distortion from application of the algorithm. Mean HU numbers were also compared between the baseline scan and corrected image sets. A similar analysis was performed on the vendor's algorithm for comparison. The algorithm developed in this work successfully preserved the image geometry and HU and corrected the CT metal artifacts in the region posterior to the metal. The average total distortion for all gantry angles in the AP, LR, and SI directions was 0.17, 0.12, and 0.14 mm, respectively. The HU measurements showed significant consistency throughout the different reconstructed images when compared to the baseline image sets. The vendor's algorithm also showed no geometrical distortion but performed inferiorly in the HU number analysis compared to our technique. Our novel metal artifact management algorithm, using CT gantry angle tilts, provides a promising technique for clinical management of metal artifacts from dental amalgam.


Assuntos
Algoritmos , Artefatos , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
5.
Acta Oncol ; 58(12): 1731-1739, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31423867

RESUMO

Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented.Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations.Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within ±5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria.Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery.


Assuntos
Auditoria Médica/métodos , Órgãos em Risco , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos de Viabilidade , Humanos , Agências Internacionais , Auditoria Médica/normas , Energia Nuclear , Projetos Piloto , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/normas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios X
6.
J Appl Clin Med Phys ; 20(1): 331-339, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30426664

RESUMO

Aluminum oxide based optically stimulated luminescent dosimeters (OSLD) have been recognized as a useful dosimeter for measuring CT dose, particularly for patient dose measurements. Despite the increasing use of this dosimeter, appropriate dosimeter calibration techniques have not been established in the literature; while the manufacturer offers a calibration procedure, it is known to have relatively large uncertainties. The purpose of this work was to evaluate two clinical approaches for calibrating these dosimeters for CT applications, and to determine the uncertainty associated with measurements using these techniques. Three unique calibration procedures were used to calculate dose for a range of CT conditions using a commercially available OSLD and reader. The three calibration procedures included calibration (a) using the vendor-provided method, (b) relative to a 120 kVp CT spectrum in air, and (c) relative to a megavoltage beam (implemented with 60 Co). The dose measured using each of these approaches was compared to dose measured using a calibrated farmer-type ion chamber. Finally, the uncertainty in the dose measured using each approach was determined. For the CT and megavoltage calibration methods, the dose measured using the OSLD nanoDot was within 5% of the dose measured using an ion chamber for a wide range of different CT scan parameters (80-140 kVp, and with measurements at a range of positions). When calibrated using the vendor-recommended protocol, the OSLD measured doses were on average 15.5% lower than ion chamber doses. Two clinical calibration techniques have been evaluated and are presented in this work as alternatives to the vendor-provided calibration approach. These techniques provide high precision for OSLD-based measurements in a CT environment.


Assuntos
Calibragem , Nanotecnologia/instrumentação , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Nanotecnologia/métodos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Incerteza
7.
J Appl Clin Med Phys ; 18(1): 223-229, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28291911

RESUMO

Radiotherapy in a seated position may be indicated for patients who are unable to lie on the treatment couch for the duration of treatment, in scenarios where a seated treatment position provides superior anatomical positioning and dose distributions, or for a low-cost system designed using a fixed treatment beam and rotating seated patient. In this study, we report a novel treatment chair that was constructed to allow for three-dimensional imaging and treatment delivery while ensuring robust immobilization, providing reproducibility equivalent to that in the traditional supine position. Five patients undergoing radiation treatment for head-and-neck cancers were enrolled and were setup in the chair, with immobilization devices created, and then imaged with orthogonal X-rays in a scenario that mimicked radiation treatments (without treatment delivery). Six subregions of the acquired images were rigidly registered to evaluate intra- and interfraction displacement and chair construction. Displacements under conditions of simulated image guidance were acquired by first registering one subregion; the residual displacement of other subregions was then measured. Additionally, we administered a patient questionnaire to gain patient feedback and assess comparison to the supine position. Average inter- and intrafraction displacements of all subregions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, L-R and A-P interfraction displacements were reduced by an average of 1 mm, providing setup of comparable quality to supine setups. The enrolled patients, who had no indication for a seated treatment position, reported no preference in the seated or the supine position. The novel chair design provides acceptable inter- and intrafraction displacement, with reproducibility equivalent to that reported for patients in the supine position. Patient feedback will be incorporated in the refinement of the chair, facilitating treatment of head-and-neck cancer in patients who are unable to lie for the duration of treatment or for use in an economical fixed-beam setup.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização/instrumentação , Posicionamento do Paciente/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Idoso , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
8.
Acta Oncol ; 55(7): 909-16, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26934916

RESUMO

UNLABELLED: The International Atomic Energy Agency (IAEA) has a long tradition of supporting development of methodologies for national networks providing quality audits in radiotherapy. A series of co-ordinated research projects (CRPs) has been conducted by the IAEA since 1995 assisting national external audit groups developing national audit programs. The CRP 'Development of Quality Audits for Radiotherapy Dosimetry for Complex Treatment Techniques' was conducted in 2009-2012 as an extension of previously developed audit programs. MATERIAL AND METHODS: The CRP work described in this paper focused on developing and testing two steps of dosimetry audit: verification of heterogeneity corrections, and treatment planning system (TPS) modeling of small MLC fields, which are important for the initial stages of complex radiation treatments, such as IMRT. The project involved development of a new solid slab phantom with heterogeneities containing special measurement inserts for thermoluminescent dosimeters (TLD) and radiochromic films. The phantom and the audit methodology has been developed at the IAEA and tested in multi-center studies involving the CRP participants. RESULTS: The results of multi-center testing of methodology for two steps of dosimetry audit show that the design of audit procedures is adequate and the methodology is feasible for meeting the audit objectives. A total of 97% TLD results in heterogeneity situations obtained in the study were within 3% and all results within 5% agreement with the TPS predicted doses. In contrast, only 64% small beam profiles were within 3 mm agreement between the TPS calculated and film measured doses. Film dosimetry results have highlighted some limitations in TPS modeling of small beam profiles in the direction of MLC leave movements. DISCUSSION: Through multi-center testing, any challenges or difficulties in the proposed audit methodology were identified, and the methodology improved. Using the experience of these studies, the participants could incorporate the auditing procedures in their national programs.


Assuntos
Radiometria/métodos , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Agências Internacionais , Imagens de Fantasmas , Controle de Qualidade , Dosímetros de Radiação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Dosimetria Termoluminescente/instrumentação , Dosimetria Termoluminescente/métodos , Dosimetria Termoluminescente/normas
9.
AJR Am J Roentgenol ; 202(4): 703-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24660695

RESUMO

OBJECTIVE: The purpose of this study was to develop a method of measuring rectal radiation dose in vivo during CT colonography (CTC) and assess the accuracy of size-specific dose estimates (SSDEs) relative to that of in vivo dose measurements. MATERIALS AND METHODS: Thermoluminescent dosimeter capsules were attached to a CTC rectal catheter to obtain four measurements of the CT radiation dose in 10 volunteers (five men and five women; age range, 23-87 years; mean age, 70.4 years). A fixed CT technique (supine and prone, 50 mAs and 120 kVp each) was used for CTC. SSDEs and percentile body habitus measurements were based on CT images and directly compared with in vivo dose measurements. RESULTS: The mean absorbed doses delivered to the rectum ranged from 8.8 to 23.6 mGy in the 10 patients, whose mean body habitus was in the 27th percentile among American adults 18-64 years old (range, 0.5-67th percentile). The mean SSDE error was 7.2% (range, 0.6-31.4%). CONCLUSION: This in vivo radiation dose measurement technique can be applied to patients undergoing CTC. Our measurements indicate that SSDEs are reasonable estimates of the rectal absorbed dose. The data obtained in this pilot study can be used as benchmarks for assessing dose estimates using other indirect methods (e.g., Monte Carlo simulations).


Assuntos
Colonografia Tomográfica Computadorizada , Doses de Radiação , Reto/efeitos da radiação , Dosimetria Termoluminescente/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Projetos Piloto
10.
J Appl Clin Med Phys ; 15(3): 4741, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24892350

RESUMO

The purpose of this study was to determine the reproducibility of patient-specific, intensity-modulated radiation therapy (IMRT) quality assurance (QA) results in a clinical setting. Six clinical patient plans were delivered to a variety of devices and analyses, including 1) radiographic film; 2) ion chamber; 3) 2D diode array delivered and analyzed in three different configurations (AP delivery with field-by-field analysis, AP delivery with composite analysis, and planned gantry angle delivery); 4) helical diode array; and 5) in-house-designed multiple ion chamber phantom. The six clinical plans were selected from a range of treatment sites and were of various levels of complexity. Of note, three of the plans had failed at least preliminary evaluation with our in-house IMRT QA; the other three plans had passed QA. These plans were delivered three times sequentially without changing the setup, and then delivered two more times after breaking down and rebuilding the setup between each. This allowed for an investigation of reproducibility (in terms of dose, dose difference or percent of pixels passing gamma) of both the delivery and the physical setup. This study showed that the variability introduced from the setup was generally higher than the variability from redelivering the plan. Radiographic film showed the poorest reproducibility of the dosimeters investigated. In conclusion, the various IMRT QA systems demonstrated varying abilities to reproduce QA results consistently. All dosimetric devices demonstrated a reproducibility (coefficient of variation) of less than 4% in their QA results for all plans, with an average reproducibility of less than 2%. This work provides some quantification for the variability that may be seen for IMRT QA dosimeters.


Assuntos
Medicina de Precisão/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/instrumentação , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Modelagem Computacional Específica para o Paciente/normas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
11.
J Appl Clin Med Phys ; 15(4): 4690, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207399

RESUMO

We investigated the sensitivity of the gamma index to two factors: the spatial resolution and the noise level in the measured dose distribution. We also examined how the choice of reference distribution and analysis software affect the sensitivity of gamma analysis to these two factors for quality assurance (QA) of intensity-modulated radiation therapy (IMRT) treatment plans. For ten clinical IMRT plans, the dose delivered to a transverse dose plane was measured with EDR2 radiographic film. To evaluate the effects of spatial resolution, each irradiated film was digitized using three different resolutions (71, 142, and 285 dpi). To evaluate the effects of image noise, 1% and 2% local Gaussian noise was added to the film images. Gamma analysis was performed using 2%/2 mm and 3%/3 mm acceptance criteria and two commercial software packages, OmniPro I'mRT and DoseLab Pro. Dose comparisons were performed with the treatment planning system (TPS)-calculated dose as the reference, and then repeated with the film as the reference to evaluate how the choice of reference distribution affects the results of dose comparisons. When the TPS-calculated dose was designated as the reference distribution, the percentage of pixels with passing gamma values increased with both increasing resolution and noise. For 3%/3 mm acceptance criteria, increasing the film image resolution by a factor of two and by a factor of four caused a median increase of 0.9% and 2.6%, respectively, in the percentage of pixels passing. Increasing the noise level in the film image resulted in a median increase in percentage of pixels passing of 5.5% for 1% added local Gaussian noise and 5.8% for 2% added noise. In contrast, when the film was designated as the reference distribution, the percentage of pixels passing decreased with increased film noise, while increased resolution had no significant effect on passing rates. Furthermore, the sensitivity of gamma analysis to noise and resolution differed between OmniPro I'mRT and DoseLab Pro, with DoseLab Pro being less sensitive to the effects of noise and resolution. Noise and high scanning resolution can artificially increase the percentage of pixels with passing gamma values in IMRT QA. Thus, these factors, if not properly taken into account, can potentially affect the results of IMRT QA by causing a plan that should be classified as failing to be falsely classified as passing. In designing IMRT QA protocols, it is important to be aware that gamma analysis is sensitive to these parameters.


Assuntos
Raios gama , Neoplasias/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Algoritmos , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Razão Sinal-Ruído , Software
12.
J Appl Clin Med Phys ; 15(5): 4935, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207581

RESUMO

Due to a lack of information regarding the current clinical experience of IMRT QA for a large and varied plan population, we reviewed our patient-specific IMRT quality assurance (QA) results for 13,003 treatment plans from 13 distinct treatment sites from a six-year period. QA records were reviewed for dose difference (single point with ion chamber measurement; ± 3% agreement criteria) and percentage of pixels passing relative dose gamma analysis (film measurement; 90% passing 5%(global)/3 mm agreement criteria) from 2005 through 2011. Plan records were analyzed for trends with measurement date and treatment site. Plans failing to meet QA tolerance criteria were evaluated for follow-up clinical action (i.e., if repeat measurements were performed). The mean difference (± SD) between ion chamber point measurements and calculated doses was -0.29% ± 1.64% (calculated values being slightly higher) and, regarding planar dose evaluations, the mean percentage of pixels passing the gamma criteria of 5%(global)/3 mm was 97.7% (lower 95th percentile: 92.2%). 97.7% and 99.3% of plans passed the point dose and planar dose verification, respectively. We observed statistically significant differences (p< 0.05) in both point dose and planar dose verification measurements as a function of treatment site (particularly for stereotactic spine and mesothelioma sites) and measurement date (average agreement improved with time). However, despite improved dosimetric agreement, the percentage of failing plans has remained nearly constant at 2.3%.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde/estatística & dados numéricos , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/estatística & dados numéricos , Radioterapia Conformacional/normas , Fidelidade a Diretrizes , Humanos , Estudos Longitudinais , Estados Unidos
13.
J Appl Clin Med Phys ; 15(2): 4523, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24710437

RESUMO

The delivery of accurate proton dose for clinical trials requires that the appropriate conversion function from Hounsfield unit (HU) to relative linear stopping power (RLSP) be used in proton treatment planning systems (TPS). One way of verifying that the TPS is calculating the correct dose is an end-to-end test using an anthropomorphic phantom containing tissue equivalent materials and dosimeters. Many of the phantoms in use for such end-to-end tests were originally designed using tissue-equivalent materials that had physical characteristics to match patient tissues when irradiated with megavoltage photon beams. The aim of this study was to measure the RLSP of materials used in the phantoms, as well as alternative materials to enable modifying phantoms for use at proton therapy centers. Samples of materials used and projected for use in the phantoms were measured and compared to the HU assigned by the treatment planning system. A percent difference in RLSP of 5% was used as the cutoff for materials deemed acceptable for use in proton therapy (i.e., proton equivalent). Until proper tissue-substitute materials are identified and incorporated, institutions that conduct end-to-end tests with the phantoms are instructed to override the TPS with the measured stopping powers we provide. To date, the RLSPs of 18 materials have been measured using a water phantom and/or multilayer ion chamber (MLIC). Nine materials were identified as acceptable for use in anthropomorphic phantoms. Some of the failing tissue substitute materials are still used in the current phantoms. Further investigation for additional appropriate tissue substitute materials in proton beams is ongoing. Until all anthropomorphic phantoms are constructed of appropriate materials, a unique HU-RLSP phantom has been developed to be used during site visits to verify the proton facility's treatment planning HU-RLSP calibration curve.


Assuntos
Imagens de Fantasmas , Terapia com Prótons/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/instrumentação , Antropometria , Calibragem , Humanos , Terapia com Prótons/métodos , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Radioterapia/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
14.
J Appl Clin Med Phys ; 14(2): 4139, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23470942

RESUMO

Although treatment planning systems are generally thought to have poor accuracy for out-of-field dose calculations, little work has been done to quantify this dose calculation inaccuracy for modern treatment techniques, such as intensity-modulated radiation therapy (IMRT), or to understand the sources of this inaccuracy. The aim of this work is to evaluate the accuracy of out-of-field dose calculations by a commercial treatment planning system (TPS), Pinnacle3 v.9.0, for IMRT treatment plans. Three IMRT plans were delivered to anthropomorphic phantoms, and out-of-field doses were measured using thermoluminescent detectors (TLDs). The TLD-measured dose was then compared to the TPS-calculated dose to quantify the accuracy of TPS calculations at various distances from the field edge and out-of-field anatomical locations of interest (i.e., radiosensitive organs). The individual components of out-of-field dose (patient scatter, collimator scatter, and head leakage) were also calculated in Pinnacle and compared to Monte Carlo simulations for a 10 × 10 cm2 field. Our results show that the treatment planning system generally underestimated the out-of-field dose and that this underestimation worsened (accuracy decreased) for increasing distances from the field edge. For the three IMRT treatment plans investigated, the TPS underestimated the dose by an average of 50%. Our results also showed that collimator scatter was underestimated by the TPS near the treatment field, while all components of out-of-field dose were severely underestimated at greater distances from the field edge. This study highlights the limitations of commercial treatment planning systems in calculating out-of-field dose and provides data about the level of accuracy, or rather inaccuracy, that can be expected for modern IMRT treatments. Based on our results, use of the TPS-reported dose could lead to an underestimation of secondary cancer induction risk, as well as poor clinical decision-making for pregnant patients or patients with implantable cardiac pacemakers and defibrillators.


Assuntos
Algoritmos , Artefatos , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Software , Indústrias , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
15.
J Appl Clin Med Phys ; 14(4): 4313, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23835394

RESUMO

An anthropomorphic head phantom, constructed from a water-equivalent plastic shell with only a spherical target, was modified to include a nonspherical target (pituitary) and an adjacent organ at risk (OAR) (optic chiasm), within 2 mm, simulating the anatomy encountered when treating acromegaly. The target and OAR spatial proximity provided a more realistic treatment planning and dose delivery exercise. A separate dosimetry insert contained two TLD for absolute dosimetry and radiochromic film, in the sagittal and coronal planes, for relative dosimetry. The prescription was 25 Gy to 90% of the GTV, with ≤ 10% of the OAR volume receiving ≥ 8 Gy for the phantom trial. The modified phantom was used to test the rigor of the treatment planning process and phantom reproducibility using a Gamma Knife, CyberKnife, and linear accelerator (linac)-based radiosurgery system. Delivery reproducibility was tested by repeating each irradiation three times. TLD results from three irradiations on a CyberKnife and Gamma Knife agreed with the calculated target dose to within ± 4% with a maximum coefficient of variation of ± 2.1%. Gamma analysis in the coronal and sagittal film planes showed an average passing rate of 99.4% and 99.5% using ± 5%/3 mm criteria, respectively. Results from the linac irradiation were within ± 6.2% for TLD with a coefficient of variation of ± 0.1%. Distance to agreement was calculated to be 1.2 mm and 1.3mm along the inferior and superior edges of the target in the sagittal film plane, and 1.2 mm for both superior and inferior edges in the coronal film plane. A modified, anatomically realistic SRS phantom was developed that provided a realistic clinical planning and delivery challenge that can be used to credential institutions wanting to participate in NCI-funded clinical trials.


Assuntos
Imagens de Fantasmas/normas , Radiocirurgia/normas , Acromegalia/cirurgia , Adenoma/cirurgia , Ensaios Clínicos como Assunto , Cabeça , Humanos , Pescoço , Quiasma Óptico/efeitos da radiação , Órgãos em Risco , Neoplasias Hipofisárias/cirurgia , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/normas , Reprodutibilidade dos Testes , Dosimetria Termoluminescente
16.
Med Phys ; 50(3): e25-e52, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36512742

RESUMO

Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.


Assuntos
Radioterapia de Intensidade Modulada , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Controle de Qualidade , Imagens de Fantasmas
17.
Med Phys ; 39(4): 2193-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22482641

RESUMO

PURPOSE: The purpose of this study was to verify the dosimetric performance of Acuros XB (AXB), a grid-based Boltzmann solver, in intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). METHODS: The Radiological Physics Center (RPC) head and neck (H&N) phantom was used for all calculations and measurements in this study. Clinically equivalent IMRT and VMAT plans were created on the RPC H&N phantom in the Eclipse treatment planning system (version 10.0) by using RPC dose prescription specifications. The dose distributions were calculated with two different algorithms, AXB 11.0.03 and anisotropic analytical algorithm (AAA) 10.0.24. Two dose report modes of AXB were recorded: dose-to-medium in medium (D(m,m)) and dose-to-water in medium (D(w,m)). Each treatment plan was delivered to the RPC phantom three times for reproducibility by using a Varian Clinac iX linear accelerator. Absolute point dose and planar dose were measured with thermoluminescent dosimeters (TLDs) and GafChromic® EBT2 film, respectively. Profile comparison and 2D gamma analysis were used to quantify the agreement between the film measurements and the calculated dose distributions from both AXB and AAA. The computation times for AAA and AXB were also evaluated. RESULTS: Good agreement was observed between measured doses and those calculated with AAA or AXB. Both AAA and AXB calculated doses within 5% of TLD measurements in both the IMRT and VMAT plans. Results of AXB_D(m,m) (0.1% to 3.6%) were slightly better than AAA (0.2% to 4.6%) or AXB_D(w,m) (0.3% to 5.1%). The gamma analysis for both AAA and AXB met the RPC 7%/4 mm criteria (over 90% passed), whereas AXB_D(m,m) met 5%/3 mm criteria in most cases. AAA was 2 to 3 times faster than AXB for IMRT, whereas AXB was 4-6 times faster than AAA for VMAT. CONCLUSIONS: AXB was found to be satisfactorily accurate when compared to measurements in the RPC H&N phantom. Compared with AAA, AXB results were equal to or better than those obtained with film measurements for IMRT and VMAT plans. The AXB_D(m,m) reporting mode was found to be closer to TLD and film measurements than was the AXB_D(w,m) mode. AXB calculation time was found to be significantly shorter (× 4) than AAA for VMAT.


Assuntos
Algoritmos , Neoplasias de Cabeça e Pescoço/radioterapia , Modelos Biológicos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Software , Simulação por Computador , Dosimetria Fotográfica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
18.
Med Phys ; 39(10): 6161-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039655

RESUMO

Dosimetry of eye plaques for ocular tumors presents unique challenges in brachytherapy. The challenges in accurate dosimetry are in part related to the steep dose gradient in the tumor and critical structures that are within millimeters of radioactive sources. In most clinical applications, calculations of dose distributions around eye plaques assume a homogenous water medium and full scatter conditions. Recent Monte Carlo (MC)-based eye-plaque dosimetry simulations have demonstrated that the perturbation effects of heterogeneous materials in eye plaques, including the gold-alloy backing and Silastic insert, can be calculated with reasonable accuracy. Even additional levels of complexity introduced through the use of gold foil "seed-guides" and custom-designed plaques can be calculated accurately using modern MC techniques. Simulations accounting for the aforementioned complexities indicate dose discrepancies exceeding a factor of ten to selected critical structures compared to conventional dose calculations. Task Group 129 was formed to review the literature; re-examine the current dosimetry calculation formalism; and make recommendations for eye-plaque dosimetry, including evaluation of brachytherapy source dosimetry parameters and heterogeneity correction factors. A literature review identified modern assessments of dose calculations for Collaborative Ocular Melanoma Study (COMS) design plaques, including MC analyses and an intercomparison of treatment planning systems (TPS) detailing differences between homogeneous and heterogeneous plaque calculations using the American Association of Physicists in Medicine (AAPM) TG-43U1 brachytherapy dosimetry formalism and MC techniques. This review identified that a commonly used prescription dose of 85 Gy at 5 mm depth in homogeneous medium delivers about 75 Gy and 69 Gy at the same 5 mm depth for specific (125)I and (103)Pd sources, respectively, when accounting for COMS plaque heterogeneities. Thus, the adoption of heterogeneous dose calculation methods in clinical practice would result in dose differences >10% and warrant a careful evaluation of the corresponding changes in prescription doses. Doses to normal ocular structures vary with choice of radionuclide, plaque location, and prescription depth, such that further dosimetric evaluations of the adoption of MC-based dosimetry methods are needed. The AAPM and American Brachytherapy Society (ABS) recommend that clinical medical physicists should make concurrent estimates of heterogeneity-corrected delivered dose using the information in this report's tables to prepare for brachytherapy TPS that can account for material heterogeneities and for a transition to heterogeneity-corrected prescriptive goals. It is recommended that brachytherapy TPS vendors include material heterogeneity corrections in their systems and take steps to integrate planned plaque localization and image guidance. In the interim, before the availability of commercial MC-based brachytherapy TPS, it is recommended that clinical medical physicists use the line-source approximation in homogeneous water medium and the 2D AAPM TG-43U1 dosimetry formalism and brachytherapy source dosimetry parameter datasets for treatment planning calculations. Furthermore, this report includes quality management program recommendations for eye-plaque brachytherapy.


Assuntos
Comportamento Cooperativo , Neoplasias Oculares/radioterapia , Olho/efeitos da radiação , Melanoma/radioterapia , Paládio/uso terapêutico , Relatório de Pesquisa , Sociedades Médicas , Braquiterapia , Olho/patologia , Neoplasias Oculares/patologia , Neoplasias Oculares/cirurgia , Humanos , Radioisótopos do Iodo/uso terapêutico , Melanoma/patologia , Melanoma/cirurgia , Método de Monte Carlo , Período Pós-Operatório , Período Pré-Operatório , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem
19.
J Appl Clin Med Phys ; 13(6): 3803, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23149774

RESUMO

Ion recombination is approximately corrected for in the Task Group 51 protocol by Pion, which is calculated by a two-voltage measurement. This measurement approach may be a poor estimate of the true recombination, particularly if Pion is large (greater than 1.05). Concern exists that Pion in high-dose-per-pulse beams, such as flattening filter free (FFF) beams, may be unacceptably high, rendering the two-voltage measurement technique inappropriate. Therefore, Pion was measured for flattened beams of 6, 10, 15, and 18 MV and for FFF beams of 6 and 10 MV. The values for the FFF beams were verified with 1/V versus 1/Q curves (Jaffé plots). Pion was also measured for electron beams of 6, 12, 16, 18, and 20 MeV on a traditional accelerator, as well as on the high-dose-rate Varian TrueBeam accelerator. The measurements were made at a range of depths and with PTW, NEL, and Exradin Farmer-type chambers. Consistent with the increased dose per pulse, Pion was higher for FFF beams than for flattening filter beams. However, for all beams, measurement locations, and chambers examined, Pion never exceeded 1.018. Additionally, Pion was always within 0.3% of the recombination calculated from the Jaffé plots. We conclude that ion recombination can be adequately accounted for in high-dose-rate FFF beams using Pion determined with the standard two-voltage technique.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons , Planejamento da Radioterapia Assistida por Computador , Humanos , Dosagem Radioterapêutica
20.
J Appl Clin Med Phys ; 13(5): 3962, 2012 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-22955664

RESUMO

Delivery of accurate intensity-modulated radiation therapy (IMRT) or stereotactic radiotherapy depends on a multitude of steps in the treatment delivery process. These steps range from imaging of the patient to dose calculation to machine delivery of the treatment plan. Within the treatment planning system's (TPS) dose calculation algorithm, various unique small field dosimetry parameters are essential, such as multileaf collimator modeling and field size dependence of the output. One of the largest challenges in this process is determining accurate small field size output factors. The Radiological Physics Center (RPC), as part of its mission to ensure that institutions deliver comparable and consistent radiation doses to their patients, conducts on-site dosimetry review visits to institutions. As a part of the on-site audit, the RPC measures the small field size output factors as might be used in IMRT treatments, and compares the resulting field size dependent output factors to values calculated by the institution's treatment planning system (TPS). The RPC has gathered multiple small field size output factor datasets for X-ray energies ranging from 6 to 18 MV from Varian, Siemens and Elekta linear accelerators. These datasets were measured at 10 cm depth and ranged from 10 × 10 cm(2) to 2 × 2 cm(2). The field sizes were defined by the MLC and for the Varian machines the secondary jaws were maintained at a 10 × 10 cm(2). The RPC measurements were made with a micro-ion chamber whose volume was small enough to gather a full ionization reading even for the 2 × 2 cm(2) field size. The RPC-measured output factors are tabulated and are reproducible with standard deviations (SD) ranging from 0.1% to 1.5%, while the institutions' calculated values had a much larger SD range, ranging up to 7.9% [corrected].The absolute average percent differences were greater for the 2 × 2 cm(2) than for the other field sizes. The RPC's measured small field output factors provide institutions with a standard dataset against which to compare their TPS calculated values. Any discrepancies noted between the standard dataset and calculated values should be investigated with careful measurements and with attention to the specific beam model.


Assuntos
Aceleradores de Partículas/normas , Dosagem Radioterapêutica/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Física Médica , Humanos , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA