Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Infect Dis ; 77(4): 645-648, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37073575

RESUMO

The timing of maternal pertussis vaccination influences the titers of cord-blood anti-pertussis antibodies. Whether it affects their avidity is unknown. We demonstrate in 298 term and 72 preterm neonates that antibody avidity is independent of the timing of maternal vaccination, whether comparing second with third trimester or intervals before birth.


Assuntos
Anticorpos Antibacterianos , Coqueluche , Recém-Nascido , Gravidez , Feminino , Humanos , Imunidade Materno-Adquirida , Vacinação , Coqueluche/prevenção & controle , Terceiro Trimestre da Gravidez
2.
J Immunol ; 189(12): 5764-72, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23162125

RESUMO

Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.


Assuntos
Adjuvantes Imunológicos/fisiologia , Envelhecimento/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Microambiente Celular/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Adjuvantes Imunológicos/administração & dosagem , Transferência Adotiva , Animais , Animais Recém-Nascidos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Comunicação Celular/genética , Diferenciação Celular/genética , Senescência Celular/imunologia , Ilhas de CpG/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T Auxiliares-Indutores/transplante , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/imunologia
3.
Front Immunol ; 14: 1107156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006315

RESUMO

Objectives: To comprehensively analyze the quality of the antibody response between children with Multisystem inflammatory syndrome (MIS-C) and age-matched controls at one month after SARS-CoV-2 exposure, and infected in the same time-period. Methods: Serum from 20 MIS-C children at admission, and 14 control children were analyzed. Antigen specific antibody isotypes and subclasses directed against various antigens of SARS-CoV-2 as well as against human common coronavirus (HCoVs) and commensal or pathogenic microorganisms were assessed by a bead-based multiplexed serological assay and by ELISA. The functionality of these antibodies was also assessed using a plaque reduction neutralization test, a RBD-specific avidity assay, a complement deposition assay and an antibody-dependent neutrophil phagocytosis (ADNP) assay. Results: Children with MIS-C developed a stronger IgA antibody response in comparison to children with uncomplicated COVID-19, while IgG and IgM responses are largely similar in both groups. We found a typical class-switched antibody profile with high level of IgG and IgA titers and a measurable low IgM due to relatively recent SARS-CoV-2 infection (one month). SARS-CoV-2-specific IgG antibodies of MIS-C children had higher functional properties (higher neutralization activity, avidity and complement binding) as compared to children with uncomplicated COVID-19. There was no difference in the response to common endemic coronaviruses between both groups. However, MIS-C children had a moderate increase against mucosal commensal and pathogenic strains, reflecting a potential association between a disruption of the mucosal barrier with the disease. Conclusion: Even if it is still unclear why some children develop a MIS-C, we show here that MIS-C children produce higher titers of IgA antibodies, and IgG antibodies with higher functionality, which could reflect the local gastro-intestinal mucosal inflammation potentially induced by a sustained SARS-CoV-2 gut infection leading to continuous release of SARS-CoV-2 antigens.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Doenças do Tecido Conjuntivo , Humanos , Criança , SARS-CoV-2 , Formação de Anticorpos , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M
4.
Nat Commun ; 14(1): 476, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717561

RESUMO

The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.


Assuntos
COVID-19 , Relógios Circadianos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade Adaptativa , Vacinação , Linfonodos
5.
JAMA Neurol ; 79(4): 399-404, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35212717

RESUMO

IMPORTANCE: The SARS-CoV-2 variant B.1.1.529 (Omicron) escapes neutralizing antibodies elicited after COVID-19 vaccination, while T-cell responses might be better conserved. It is crucial to assess how a third vaccination modifies these responses, particularly for immunocompromised patients with readily impaired antibody responses. OBJECTIVE: To determine T-cell responses to the Omicron spike protein in anti-CD20-treated patients with multiple sclerosis (MS) before and after a third messenger RNA COVID-19 vaccination. DESIGN, SETTING, AND PARTICIPANTS: In this prospective cohort study conducted from March 2021 to November 2021 at the University Hospital Geneva, adults with MS receiving anti-CD20 treatment (ocrelizumab) were identified by their treating neurologists and enrolled in the study. A total of 20 patients received their third dose of messenger RNA COVID-19 vaccine and were included in this analysis. INTERVENTIONS: Blood sampling before and 1 month after the third vaccine dose. MAIN OUTCOMES AND MEASURES: Quantification of CD4 and CD8 (cytotoxic) T cells specific for the SARS-CoV-2 spike proteins of the vaccine strain as well as the Delta and Omicron variants, comparing frequencies before and after the third vaccine dose. RESULTS: Of 20 included patients, 11 (55%) were male, and the median (IQR) age was 45.8 (37.8-53.3) years. Spike-specific CD4 and CD8 T-cell memory against all variants were maintained in 9 to 12 patients 6 months after their second vaccination, albeit at lower median frequencies against the Delta and Omicron variants compared with the vaccine strain (CD8 T cells: Delta, 83.0%; 95% CI, 73.6-114.5; Omicron, 78.9%; 95% CI, 59.4-100.0; CD4 T cells: Delta, 72.2%; 95% CI, 67.4-90.5; Omicron, 62.5%; 95% CI, 51.0-89.0). A third dose enhanced the number of responders to all variants (11 to 15 patients) and significantly increased CD8 T-cell responses, but the frequencies of Omicron-specific CD8 T cells remained 71.1% (95% CI, 41.6-96.2) of the responses specific to the vaccine strain. CONCLUSIONS AND RELEVANCE: In this cohort study of patients with MS treated with ocrelizumab, there were robust T-cell responses recognizing spike proteins from the Delta and Omicron variants, suggesting that COVID-19 vaccination in patients taking B-cell-depleting drugs may protect them against serious complications from COVID-19 infection. T-cell response rates increased after the third dose, demonstrating the importance of a booster dose for this population.


Assuntos
COVID-19 , Esclerose Múltipla , Adulto , Anticorpos Monoclonais Humanizados , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/uso terapêutico
6.
Front Immunol ; 13: 841009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585978

RESUMO

Objective: To comprehensively evaluate SARS-CoV-2 specific B-cell and antibody responses up to one year after mild COVID-19. Methods: In 31 mildly symptomatic COVID-19 participants SARS-CoV-2-specific plasmablasts and antigen-specific memory B cells were measured by ELISpot. Binding antibodies directed against the proteins spike (S), domain S1, and nucleocapsid (N) were estimated using rIFA, ELISA, and commercially available assays, and avidity measured using thiocyanate washout. Neutralizing antibodies against variants of concern were measured using a surrogate-neutralization test. Results: Plasmablast responses were assessed in all participants who gave sequential samples during the first two weeks after infection; they preceded the rise in antibodies and correlated with antibody titers measured at one month. S1 and N protein-specific IgG memory B-cell responses remained stable during the first year, whereas S1-specific IgA memory B-cell responses declined after 6 months. Antibody titers waned over time, whilst potent affinity maturation was observed for anti-RBD antibodies. Neutralizing antibodies against wild-type (WT) and variants decayed during the first 6 months but titers significantly increased for Alpha, Gamma and Delta between 6 months and one year. Therefore, near-similar titers were observed for WT and Alpha after one year, and only slightly lower antibody levels for the Delta variant compared to WT. Anti-RBD antibody responses correlated with the neutralizing antibody titers at all time points, however the predicted titers were 3-fold lower at one year compared to one month. Conclusion: In mild COVID-19, stable levels of SARS-CoV-2 specific memory B cells and antibodies neutralizing current variants of concern are observed up to one year post infection. Care should be taken when predicting neutralizing titers using commercial assays that measure binding antibodies.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Glicoproteína da Espícula de Coronavírus
7.
Front Immunol ; 10: 1520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333656

RESUMO

Pertussis is still observed in many countries despite of high vaccine coverage. Acellular pertussis (aP) vaccination is widely implemented in many countries as primary series in infants and as boosters in school-entry/adolescents/adults (including pregnant women in some). One novel strategy to improve the reactivation of aP-vaccine primed immunity could be to include genetically- detoxified pertussis toxin and novel adjuvants in aP vaccine boosters. Their preclinical evaluation is not straightforward, as it requires mimicking the human situation where T and B memory cells may persist longer than vaccine-induced circulating antibodies. Toward this objective, we developed a novel murine model including two consecutive adoptive transfers of the memory cells induced by priming and boosting, respectively. Using this model, we assessed the capacity of three novel aP vaccine candidates including genetically-detoxified pertussis toxin, pertactin, filamentous hemagglutinin, and fimbriae adsorbed to aluminum hydroxide, supplemented-or not-with Toll-Like-Receptor 4 or 9 agonists (TLR4A, TLR9A), to reactivate aP vaccine-induced immune memory and protection, reflected by bacterial clearance. In the conventional murine immunization model, TLR4A- and TLR9A-containing aP formulations induced similar aP-specific IgG antibody responses and protection against bacterial lung colonization as current aP vaccines, despite IL-5 down-modulation by both TLR4A and TLR9A and IL-17 up-modulation by TLR4A. In the absence of serum antibodies at time of boosting or exposure, TLR4A- and TLR9A-containing formulations both enhanced vaccine antibody recall compared to current aP formulations. Unexpectedly, however, protection was only increased by the TLR9A-containing vaccine, through both earlier bacterial control and accelerated clearance. This suggests that TLR9A-containing aP vaccines may better reactivate aP vaccine-primed pertussis memory and enhance protection than current or TLR4A-adjuvanted aP vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Bordetella pertussis/imunologia , Vacina contra Coqueluche , Receptor 4 Toll-Like , Receptor Toll-Like 9 , Animais , Anticorpos Antibacterianos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/farmacologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle
8.
J Exp Med ; 213(2): 177-87, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26809444

RESUMO

Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2(-/-) mice exhibited enhanced effector CD4(+) and CD8(+) T cell responses, impaired CD4(+) regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell-mediated immunity.


Assuntos
Genes MHC da Classe II , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Butirofilinas , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Celular , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Transativadores/genética , Transativadores/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
9.
Microbes Infect ; 6(7): 666-75, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15158774

RESUMO

To protect against human respiratory syncytial virus (hRSV)-induced bronchiolitis in early infancy, vaccines need to be designed which are effective in the neonatal period. To test the safety and efficacy of adjuvants in neonatal mice, we injected hRSV surface proteins combined with immune-stimulating complexes (ISCOMs) prepared from fractions A, C or A + C of Quillaja saponins. All were well tolerated in adults, but A + C ISCOMS proved lethal in neonates; A or C fractions alone were well tolerated by neonates up to the adult dose. hRSV-ISCOM A induced antibody responses similar to combined fractions, and potent in vitro cytotoxic T cell responses. Adult-like in vitro cytotoxicity against hRSV-infected targets and precursor cytotoxic T cell frequencies were observed within one week of neonatal priming and hRSV-ISCOM A-primed neonates showed virtually complete protection against subsequent viral challenge. hRSV challenge was associated with some pulmonary eosinophilia in both age groups, with higher IL-4 production by lung CD4+ T cells in mice primed as neonates. This was, however, accompanied by only minor (approximately 10%) and transient illness and weight loss. Thus, the identification of hRSV antigen delivery systems with an age-appropriate adjuvanticity/reactogenicity balance may be feasible even in the vulnerable early-life period.


Assuntos
Adjuvantes Imunológicos , Bronquiolite Viral/prevenção & controle , ISCOMs , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano/imunologia , Saponinas , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/uso terapêutico , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/sangue , Bronquiolite Viral/virologia , Humanos , ISCOMs/administração & dosagem , ISCOMs/efeitos adversos , ISCOMs/uso terapêutico , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/uso terapêutico , Saponinas/administração & dosagem , Saponinas/química , Saponinas/uso terapêutico , Linfócitos T/imunologia
10.
PLoS One ; 8(12): e85302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376875

RESUMO

Infant mortality from viral infection remains a major global health concern: viruses causing acute infections in immunologically mature hosts often follow a more severe course in early life, with prolonged or persistent viral replication. Similarly, the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) causes acute self-limiting infection in adult mice but follows a protracted course in infant animals, in which LCMV-specific CD8⁺ T cells fail to expand and control infection. By disrupting type I IFNs signaling in adult mice or providing IFN-α supplementation to infant mice, we show here that the impaired early life T cell responses and viral control result from limited early type I IFN responses. We postulated that plasmacytoid dendritic cells (pDC), which have been identified as one major source of immediate-early IFN-I, may not exert adult-like function in vivo in the early life microenvironment. We tested this hypothesis by studying pDC functions in vivo during LCMV infection and identified a coordinated downregulation of infant pDC maturation, activation and function: despite an adult-like in vitro activation capacity of infant pDCs, the expression of the E2-2 pDC master regulator (and of critical downstream antiviral genes such as MyD88, TLR7/TLR9, NF-κB, IRF7 and IRF8) is downregulated in vivo at baseline and during LCMV infection. A similar pattern was observed in response to ssRNA polyU, a model ligand of the TLR7 viral sensor. This suggests that the limited T cell-mediated defense against early life viral infections is largely attributable to / regulated by infant pDC responses and provides incentives for novel strategies to supplement or stimulate immediate-early IFN-α responses.


Assuntos
Infecções por Arenaviridae/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Linfócitos T/imunologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Primers do DNA/genética , Citometria de Fluxo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA