Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
2.
J Pept Sci ; 24(11): e3129, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30325566

RESUMO

Eight molecules, four peptides (SPs) and four lipopeptides (LPs) derived by rational design from surfactin, a well-known secreted biosurfactant from Bacillus subtilis, were produced employing Fmoc-based solid-phase synthesis. These new peptides were tested to evaluate their potential biosurfactant and biological activities, aiming at possible applications in industrial, biological, pharmaceutical, and medical use. Five molecules (SP1, SP2, SP4, LP5, and LP8) presented potential for medical uses, mainly due to their drug delivery properties as suggested by their synergistic activity with the antibiotic vancomycin against Staphylococcus aureus. All synthetic peptides showed low toxicity against Vero cell cultures, in assays of hemolysis, and in different cytotoxicity assays. In addition, we found that three peptides (SP1, LP6, and LP7) had potential technological and industrial use because of their emulsifying capacity, low toxicity, and ability to physically stabilize solutions. These novel molecules retained some properties of the parental molecule (surfactin, which was originally obtained through nonribosomal synthesis in Bacillus subtilis) but have the advantage of being linear peptides, which can be produced at large scales through the use of conventional heterologous protein expression protocols.


Assuntos
Bacillus subtilis/metabolismo , Lipopeptídeos/síntese química , Peptídeos Cíclicos/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Animais , Bacillus subtilis/química , Proteínas de Bactérias/química , Chlorocebus aethiops , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sinergismo Farmacológico , Emulsificantes/síntese química , Emulsificantes/química , Emulsificantes/farmacologia , Humanos , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Células Vero
3.
Mol Cell Biochem ; 429(1-2): 187-198, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28190171

RESUMO

Aiming to clarify the mechanism of inhibition of (Na+, K+)-ATPase activity by polyamines, we examined the effects of exogenous putrescine, spermidine, and spermine on the kinetic behavior of phosphoenzyme-linked partial reactions using a microsomal gill (Na+, K+)-ATPase from juvenile and adult M. amazonicum, a freshwater palaemonid shrimp. The time course of phosphointermediate formation is greater (0.089 ± 0.006 s-1) in adults than in juveniles (0.053 ± 0.003 s-1) for spermidine, but similar to juveniles (0.059 ± 0.004 s-1) for putrescine. Maximum phosphointermediate formation for the (Na+, K+)-ATPase from juveniles decreased by 46% and 32% with spermidine and putrescine, respectively. In adults, maximum phosphointermediate levels decreased by 50% and 8%, respectively. For both spermidine and putrescine, dephosphorylation rates were higher for adults than for juveniles, and were higher than in controls without polyamines. Spermine had a negligible effect (<10%) on phosphorylation/dephosphorylation rates of both juvenile and adult enzymes. This is the first report on the effects of polyamines on phosphoenzyme-linked partial reactions in juvenile and adult M. amazonicum gill (Na+, K+)-ATPases. Our findings suggest that the phosphorylation/dephosphorylation steps of this gill enzyme may be regulated by polyamines during ontogenetic development.


Assuntos
Brânquias/enzimologia , Palaemonidae/enzimologia , Poliaminas/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Cinética , Palaemonidae/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Putrescina/farmacologia , Espermidina/farmacologia , Espermina/farmacologia
4.
Arch Biochem Biophys ; 570: 58-65, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25721495

RESUMO

The isoquinoline alkaloid chelerythrine is described as an inhibitor of SERCA. The ATPase inhibition presented two non-competitive components, Ki1=1, 2 µM and Ki2=26 µM. Conversely, chelerythrine presented a dual effect on the p-nitrophenylphosphatase (pNPPase) of SERCA. Ca(2+)-dependent pNPPase was activated up to ∼5 µM chelerythrine with inhibition thereafter. Ca(2+)-independent pNPPase was solely inhibited. The phosphorylation of SERCA with ATP reached half-inhibition with 10 µM chelerythrine and did not parallel the decrease of ATPase activity. In contrast, chelerythrine up to 50 µM increased the phosphorylation by Pi. Cross-linking of SERCA with glutaraldehyde was counteracted by high concentrations of chelerythrine. The controlled tryptic digestion of SERCA shows that the low-affinity binding of chelerythrine evoked an E2-like pattern. Our data indicate a non-competitive inhibition of ATP hydrolysis that favors buildup of the E2-conformers of the enzyme. Chelerythrine as low as 0.5-1.5 µM resulted in an increase of intracellular Ca(2+) on cultured PBMC cells. The inhibition of SERCA and the loss of cell Ca(2+) homeostasis could in part be responsible for some described cytotoxic effects of the alkaloid. Thus, the choice of chelerythrine as a PKC-inhibitor should consider its potential cytotoxicity due to the alkaloid's effects on SERCA.


Assuntos
Benzofenantridinas/química , Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/química , Animais , Benzofenantridinas/metabolismo , Sítios de Ligação , Glutaral/química , Humanos , Hidrólise , Concentração Inibidora 50 , Leucócitos Mononucleares/citologia , Monócitos/metabolismo , Músculo Esquelético/enzimologia , Fosforilação , Ligação Proteica , Conformação Proteica , Coelhos , Tripsina/química
5.
J Membr Biol ; 247(1): 23-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186357

RESUMO

Studies have reported that Na,K-ATPase interacts with E-cadherin to stabilize (AJs) and regulate the expression of claudins, the main proteins present in the tight junction (TJ) in epithelial cells containing caveolae. However, the role of this ATPase in the regulation of the AJ and TJ proteins in colorectal cancer cells as well as the molecular events underlying this event in a caveolae-independent system remain undefined. In the present study, we used ouabain, a classic drug known to inhibit Na,K-ATPase, and Caco-2 cells, which are a well-established human colorectal cancer model that does not exhibit caveolae. We demonstrated that ouabain treatment resulted in a reduction of the ß1 Na,K-ATPase protein and cell redistribution of the AJ proteins E-cadherin and ß-catenin, as well as the α1 Na,K-ATPase subunit. Furthermore, ouabain increased claudin-3 protein levels, impaired the TJ barrier function and increased cell viability and proliferation during the early stages of treatment. Additionally, the observed ouabain-induced events were dependent on the activation of ERK1/2 signaling; but in contrast to previous studies, this signaling cascade was caveolae-independent. In conclusion, our findings strongly suggest that α1 and ß1 Na,K-ATPase downregulation and ERK1/2 activation induced by ouabain are interlinked events that play an important role during cell-cell adhesion loss, which is an important step during the tumor progression of colorectal carcinomas.


Assuntos
Cavéolas/metabolismo , Neoplasias Colorretais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Ouabaína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Claudina-3 , Neoplasias Colorretais/genética , Humanos , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
6.
Arch Biochem Biophys ; 505(1): 75-82, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20869944

RESUMO

FXYD2 is a regulatory peptide associated with the α-subunit of the kidney Na,K-ATPase. FXYD2 can be phosphorylated by PKA, and its phosphorylation activates Na,K-ATPase. Here we show that FXYD2 is phosphorylated by PKC (PKC-FXYD2-P), by PKA (PKA-FXYD2-P) or by PKA and PKC simultaneously (FXYD2-P(2)) modulating both the erythrocyte Na,K-ATPase and the plasma membrane Ca(2+)-ATPase (PMCA). In erythrocyte ghosts, the addition of PKA-FXYD2-P activated Na,K-ATPase by 80%, while non-phosphorylated FXYD2 (np) activated only 55%. The addition of np FXYD2 did not affect PMCA basal activity, but FXYD2-P(2) increased the basal PMCA activity by up to 200%. Calmodulin-activated PMCA activity was increased by np FXYD2 (3-fold) or FXYD2-P(2) (2.5-fold). However, PKC-FXYD2-P increased PMCA activity only by 50%. In contrast, when PMCA was treated with PKA-FXYD2-P, the ATPase activity was inhibited by 50%. The effect of all forms of FXYD2-P on calcium uptake from PMCA resembled the pattern observed in ATP hydrolysis. Our results suggest that the FXYD2 anchoring site could be conserved among the P-ATPase family permitting cross regulation. The effects of FXYD2 on calcium uptake and calcium-stimulated ATP hydrolysis suggest a novel role for FXYD2 on PMCA.


Assuntos
ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteína Quinase C/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritrócitos/enzimologia , Medula Renal/enzimologia , Fosforilação , Suínos
7.
Int J Biochem Cell Biol ; 38(11): 1901-13, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16815075

RESUMO

In kidney, Na+, K+-ATPase is an oligomer (alphabeta gamma) with equimolar amounts of essential alpha and beta subunits and one small hydrophobic FXYD protein (gamma subunit). This report describes gamma subunit as an activator of pig kidney outer medulla Na+, K+-ATPase in aqueous medium. The effects of gamma subunit on Na+, K+-ATPase were dose-dependent and preincubation-dependent. Changes in alphabeta/gamma stoichiometry did not alter Km1 for ATP, and slightly increased Km2, but Vmax was increased at both catalytic and regulatory sites. Hydroxylamine treatment of enzyme phosphorylated by ATP (E-P), in the presence of additional gamma subunit, revealed that 52% of the E-P accumulation was not via acyl-phosphate formation. The gamma subunit was phosphorylated by endogenous kinases and by commercial catalytic subunit of protein kinase A (PKA). Additionally, we demonstrated that PKA phosphorylation of gamma subunit increased its capacity to stimulate ATP hydrolysis. These results suggest that gamma subunit can act as an intrinsic Na+, K+-ATPase regulator in kidney.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Rim/enzimologia , Rim/metabolismo , Cinética , Lipídeos/química , Lipídeos/isolamento & purificação , Lipídeos/farmacologia , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Suínos
8.
Clin Chim Acta ; 433: 58-61, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24607325

RESUMO

BACKGROUND: In developing countries, the access to red blood cell (RBC) irradiators is restricted. Thus, it is a common practice in blood banks to stock irradiated RBC units until they expire. The aim of this work is to elucidate the involvement of Na,K-ATPase in potassium leakage from prophylactically irradiated RBCs. METHODS: Whole blood was collected from healthy donors, and blood concentrates were irradiated with 25Gy of γ-radiation within 24h of collection. At days 3, 5, 7, 9, 11, 14 and 28 post-irradiation, fractions were removed and centrifuged and Na,K-ATPase activity from ghost membranes was determined. RESULTS: The inhibition of Na,K-ATPase activity in RBCs reached 12.6% by day 7 of storage and up to 50% by day 14 of storage. The addition of vitamin C prevented the irradiation-induced loss of Na,K-ATPase activity. The irradiation of RBCs provoked an increase in potassium plasma levels and a decrease in sodium plasma levels. The incubation of RBCs with ouabain did not change the sodium or potassium levels in the plasma, and the addition of vitamin C only partially prevented a decrease in sodium levels caused by irradiation. CONCLUSION: Because the inhibition of Na,K-ATPase by ouabain did not cause potassium accumulation in the plasma, we conclude that the irradiation-induced inhibition of the pump is not a key factor driving this effect.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/efeitos da radiação , Potássio/sangue , ATPase Trocadora de Sódio-Potássio/metabolismo , Manejo de Espécimes/métodos , Inibidores Enzimáticos/farmacologia , Humanos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
9.
Curr HIV Res ; 7(3): 327-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19442130

RESUMO

We recently described that the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) inhibits the human immunodeficiency virus type 1 (HIV-1) enzyme reverse transcriptase (RT), and its replication in primary cells. Based on these findings, we performed kinetic studies to investigate the mode of inhibition of compound A and its aglycan analog (compound B). We found that both molecules inhibited RT activity independently of the template/primer used. Nevertheless, compound A was 10-fold more potent than compound B. Compound A inhibited the RNA-dependent DNA polymerase (RDDP) activity of RT with an uncompetitive and a noncompetitive mode of action with respect to dTTP incorporation and to template/primer (TP) uptake, respectively. The kinetic pattern of the inhibition displayed by compound A was probably due to its greater affinity for the ternary complex (RT-TP-dNTP) than the enzyme alone or the binary complex (RT-TP). Besides, by means of molecular modeling, we show that compound A bound on the NNRTI binding pocket of RT. However, our molecule targets such a site by making novel interactions with the enzyme RT, when compared to NNRTIs. These include a hydrogen bridge between the 2'-OH of our compound and the Tyr675 of the enzyme RT's chain B. Therefore, compound A is able to synergize with both a NRTI (AZT-TP) and a NNRTI (efavirenz). Taken together, our results suggest that compound A displays a novel mechanism of action, which may be different from classical NRTIs and NNRTIs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonucleosídeos/farmacologia , Sítios de Ligação , Simulação por Computador , Humanos , Cinética , Modelos Moleculares , Ligação Proteica
10.
Curr HIV Res ; 6(3): 209-17, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18473784

RESUMO

We describe in this paper that the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl)-quinoline-3-carboxylic acid (compound A) inhibits the HIV-1 replication in human primary cells. We initially observed that compound A inhibited HIV-1 infection in peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner, resulting in an EC(50) of 1.5 +/- 0.5 microM and in a selective index of 1134. Likewise, compound A blocked HIV-1(BA-L) replication in macrophages in a dose-dependent manner, with an EC(50) equal to 4.98 +/- 0.9 microM. The replication of HIV-1 isolates from subtypes C and F was also inhibited by compound A with the same efficiency. Compound A inhibited an early event of the HIV-1 replicative cycle, since it prevented viral DNA synthesis in PBMCs exposed to HIV-1. Kinetic assays demonstrated that compound A inhibits the HIV-1 enzyme reverse transcriptase (RT) in dose-dependent manner, with a K(I) equal to 0.5 +/- 0.04 microM. Using a panel of HIV-1 isolates harboring NNRTI resistance mutations, we found a low degree of cross-resistance between compound A and clinical available NNRTIs. In addition, compound A exhibited additive effects with the RT inhibitors AZT and nevirapine, and synergized with the protease inhibitor atazanavir. Our results encourage continuous studies about the kinetic impact of compound A towards different catalytic forms of RT enzyme, and suggest that our nucleoside represents a promising molecule for future antiretroviral drug design.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Quinolinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonucleosídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Infecções por HIV/virologia , HIV-1/enzimologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Macrófagos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA