Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268747

RESUMO

The thermodynamics, structures, and applications of thermoresponsive systems, consisting primarily of water solutions of organic salts, are reviewed. The focus is on organic salts of low melting temperatures, belonging to the ionic liquid (IL) family. The thermo-responsiveness is represented by a temperature driven transition between a homogeneous liquid state and a biphasic state, comprising an IL-rich phase and a solvent-rich phase, divided by a relatively sharp interface. Demixing occurs either with decreasing temperatures, developing from an upper critical solution temperature (UCST), or, less often, with increasing temperatures, arising from a lower critical solution temperature (LCST). In the former case, the enthalpy and entropy of mixing are both positive, and enthalpy prevails at low T. In the latter case, the enthalpy and entropy of mixing are both negative, and entropy drives the demixing with increasing T. Experiments and computer simulations highlight the contiguity of these phase separations with the nanoscale inhomogeneity (nanostructuring), displayed by several ILs and IL solutions. Current applications in extraction, separation, and catalysis are briefly reviewed. Moreover, future applications in forward osmosis desalination, low-enthalpy thermal storage, and water harvesting from the atmosphere are discussed in more detail.

2.
Macromolecules ; 56(9): 3272-3285, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37181244

RESUMO

Acrylic polymers, commonly used in paints, can degrade over time by several different chemical and physical mechanisms, depending on structure and exposure conditions. While exposure to UV light and temperature results in irreversible chemical damage, acrylic paint surfaces in museums can also accumulate pollutants, such as volatile organic compounds (VOCs) and moisture, that affect their material properties and stability. In this work, we studied the effects of different degradation mechanisms and agents on properties of acrylic polymers found in artists' acrylic paints for the first time using atomistic molecular dynamics simulations. Through the use of enhanced sampling methods, we investigated how pollutants are absorbed into thin acrylic polymer films from the environment around the glass transition temperature. Our simulations suggest that the absorption of VOCs is favorable (-4 to -7 kJ/mol depending on VOCs), and the pollutants can easily diffuse and be emitted back into the environment slightly above glass transition temperature when the polymer is soft. However, typical environmental fluctuations in temperature (<16 °C) can lead for these acrylic polymers to transition to glassy state, in which case the trapped pollutants act as plasticizers and cause a loss of mechanical stability in the material. This type of degradation results in disruption of polymer morphology, which we investigate through calculation of structural and mechanical properties. In addition, we also investigate the effects of chemical damage, such as backbone bond scission and side-chain cross-linking reactions on polymer properties.

3.
J Phys Chem B ; 127(24): 5494-5508, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267503

RESUMO

Ionic liquids (ILs) whose water solutions are thermoresponsive provide an appealing route to harvest water from the atmosphere at an energy cost that can be accessed by solar heating. IL/water solutions that present a lower critical solution temperature (LCST), i.e., demix upon increasing temperature, represent the most promising choice for this task since they could absorb vapor during the night when its saturation is highest and release liquid water during the day. The kinetics of water absorption at the surface and the role of nanostructuring in this process have been investigated by atomistic molecular dynamics simulations for the ionic liquid tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate whose LCST in water occurs at Tc = 36 °C for solutions of 50-50 wt % composition. The simulation results show that water molecules are readily adsorbed on the IL and migrate along the surface to form thick three-dimensional islands. On a slightly longer time scale, ions crawl on these islands, covering water and recreating the original surface whose free energy is particularly low. At a high deposition rate, this mechanism allows the fast incorporation of large amounts of water, producing subsurface water pockets that eventually merge into the populations of water-rich and IL-rich domains in the nanostructured bulk. Simulation results suggest that strong nanostructuring could ease the separation of water and water-contaminated IL phases even before macroscopic demixing.

4.
Adv Sci (Weinh) ; 9(19): e2200825, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460204

RESUMO

The field of organic semiconductors is multifaceted and the potentially suitable molecular compounds are very diverse. Representative examples include discotic liquid crystals, dye-sensitized solar cells, conjugated polymers, and graphene-based low-dimensional materials. This huge variety not only represents enormous challenges for synthesis but also for theory, which aims at a comprehensive understanding and structuring of the plethora of possible compounds. Eventually computational methods should point to new, better materials, which have not yet been synthesized. In this perspective, it is shown that the answer to this question rests upon the delicate balance between computational efficiency and accuracy of the methods used in the virtual screening. To illustrate the fundamentals of virtual screening, chemical design of non-fullerene acceptors, thermally activated delayed fluorescence emitters, and nanographenes are discussed.

5.
J Phys Chem B ; 125(38): 10854-10865, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34524824

RESUMO

Most of the artwork and cultural heritage objects are stored in museums under conditions that are difficult to monitor. While advanced technologies aim to control and prevent the degradation of cultural heritage objects in line with preventive conservation measures, there is much to be learned in terms of the physical processes that lead to the degradation of the synthetic polymers that form the basis of acrylic paints largely used in contemporary art. In museums, stored objects are often exposed to temperature and relative humidity fluctuations as well as airborne pollutants such as volatile organic compounds (VOCs). The glass transition of acrylic paints is below room temperature; while low temperatures may cause cracking, at high temperatures the sticky surface of the paint becomes vulnerable to pollutants. Here we develop fully atomistic models to understand the structure of two types of acrylic copolymers and their interactions with VOCs and water. The structure and properties of acrylic copolymers are slighlty modified by incorporation of a monomer with a longer side chain. With favorable solvation free energies, once absorbed, VOCs and water interact with the polymer side chains to form hydrogen bonds. The cagelike structure of the polymers prevents the VOCs and water to diffuse freely below the glass transition temperature. In addition, our model forms the foundation for developing mesoscopic and continuum models that will allow us to access longer time and length scales to further our understanding of the degradation of artwork.


Assuntos
Poluentes Ambientais , Compostos Orgânicos Voláteis , Pintura , Polímeros , Temperatura
6.
Macromolecules ; 52(14): 5307-5316, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543550

RESUMO

Despite a vast body of the literature devoted to the use of phenylene polymers in the fabrication of graphene nanoribbons, the study of the physical properties of these precursors still poses open questions whose answers will certainly contribute to the design of more efficient/precise synthesis protocols. Particularly, persistence length measurements combined with size exclusion chromatography techniques assign both semiflexible to semirigid structures depending on the molecular weight of the precursor (NaritaNat. Chem.2014, 6, 126-132). Peculiarly, these results suggest an apparent structural change upon increasing the length of the polymers. To address this puzzle, we use single-chain models to study the stiffness of polyphenylene precursors in a theta-like solvent as a function of chain composition and monomer sequence. Steric effects are isolated by considering random walk chains with segment length distributions and the position of monomers determined by the nature of the arene substitution along the backbone. Moreover, two homopolymer limiting cases are defined, that is, meta and para sequences, by associating two types of monomers to each possible substitution pattern. We consider, within these two limiting cases, chains with different compositions and monomer sequences. We compute persistence lengths, mean square end-to-end distances, and gyration and hydrodynamic radii. We find that distinct values of the persistence length for apparently the same chain chemistry are the result of different mixing ratios and the arrangement along the chain of the two positional isomers of the same monomer. Finally, we discuss the relation between two-dimensional density of the number of crossings and the length of polyphenylene segments as they would occur upon strong chain adsorption onto a substrate.

7.
Nanoscale ; 7(11): 4942-8, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25690749

RESUMO

The effect of finite temperature on the optical properties of nanostructures has been a longstanding problem for their theoretical description and its omission presents serious limits on the validity of calculated spectra and radiative lifetimes. Most ab initio calculations have been carried out neglecting temperature effects altogether, although progress has been made recently. In the present work, the temperature dependence of the intrinsic radiative lifetimes of excited electron-hole pairs in Ge and Si nanocrystals due to classical temperature effects is calculated using ab initio molecular dynamics. Fully hydrogen-saturated Ge and Si nanocrystals without surface reconstructions show opposite behavior: the very short lifetimes in Ge increase with temperature, while the much longer ones in Si decrease. However, the temperature effect is found to be strongly dependent on the surface structure: surface reconstructions cause partial localization of the wave functions and override the difference between Si and Ge. As a consequence, the temperature dependence in reconstructed nanocrystals is strongly attenuated compared to the fully saturated nanocrystals. Our calculations are an important step towards predictive modeling of the optical properties of nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA