Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biol Blood Marrow Transplant ; 19(5): 713-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23422843

RESUMO

Significant controversy exists regarding the impact of hematopoietic stroma damage by irradiation on the efficiency of engraftment of intravenously transplanted stem cells. It was previously demonstrated that in normal syngenic mice, all intravenously transplanted donor stem cells, present in the bone marrow, compete equally with those of the host. In this study, we comprehensively compared the blood cell production derived from transplanted donor stem cells with that from the host stem cells surviving various doses of submyeloablative irradiation. We compared the partial chimerism resulting from transplantation with theoretical estimates that assumed transplantation efficiencies ranging from 100% to 20%. The highest level of consensus between the experimental and the theoretical results was 100% for homing and engraftment (ie, the utilization of all transplanted stem cells). These results point to a very potent mechanism through which intravenously administered hematopoietic stem cells are captured from circulation, engraft in the hematopoietic tissue, and contribute to blood cell production in irradiated recipients. The damage done to hematopoietic stroma and to the trabecular bone by submyeloablative doses of ionizing radiation does not negatively affect the homing and engraftment mechanisms of intravenously transplanted hematopoietic progenitor and stem cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Animais , Transplante de Medula Óssea/métodos , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética , Irradiação Corporal Total/métodos
2.
Biol Blood Marrow Transplant ; 17(9): 1273-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21767513

RESUMO

Hematopoietic stem and progenitor cells (HSPC) for bone marrow transplantation are currently obtained directly from living voluntary donors or from cord blood units. However, a suitable donor is not always found. Because HSPC are known for their relative resistance to hypoxia, using an experimental murine model, we explored cadaveric bone marrow (BM) as their alternative source. After donor mice were sacrificed, BM was left in intact femurs at 37°C, 20°C, or 4°C under ischemic conditions, resulting in combined oxygen and metabolic substrate shortage and the accumulation of metabolic waste products. BM cells were harvested after a set time period ranging from 0 to 48 hours. To determine the impact of delayed harvesting on the transplantability of HSPC, a competitive repopulation assay using a murine Ly5.1/Ly5.2 congenic model in 2 different settings was used: after submyeloablative (6 Gy) or myeloablative (9 Gy) total-body irradiation, Ly5.2 hosts received cadaveric Ly5.1 cells or a mixture of cadaveric Ly5.1 cells and fresh Ly5.2 cells in a 1:1 ratio. Chimerism resulting from cadaveric donor cells, followed up to 6 months after transplantation, proved that the long-term repopulation ability of HSPC was fully preserved for 2 hours, 6 hours, and 12 hours at 37°C, 20°C, and 4°C of ischemia, respectively. A colony-forming unit-spleen (CFU-S) clonogenic assay revealed a higher sensitivity of proliferating hematopoietic progenitors to ischemia compared to repopulating cells (STRC and LTRC). Flow cytometry analysis of apoptosis in cadaveric BM demonstrated that the LSK (Lin(low)Sca-1(+)c-Kit(+)) subpopulation, enriched in HSPC, contained less apoptotic and dead cells than the BM as a whole. Furthermore, the number of LSK SLAM (CD150(+)CD48(-)) and LSK SP (side population) cells (fractions highly enriched in hematopoietic stem cells) decreased in parallel with BM transplantability. As well as cadaveric BM cells, we also tested the transplantability and survival of BM cells after storage in a suspension in vitro without specific hematopoietic growth factors. HSPC did not display any decrease in transplantability after 2 days of storage at 37°C or 4 days at 4°C. A higher sensitivity of progenitors to unfavorable conditions was observed again using CFU-S and granulocyte macrophage-colony forming cell (GM-CFC) assays, especially at 37°C. This paper shows that HSPC survive the cessation of circulation for a considerable time and maintain their engraftment potential. This time is significantly extended with in vitro storage compared to the cadaveric BM.


Assuntos
Transplante de Medula Óssea , Sobrevivência Celular , Hematopoese , Células-Tronco Hematopoéticas/citologia , Preservação de Tecido , Animais , Medula Óssea , Cadáver , Células-Tronco Hematopoéticas/fisiologia , Humanos , Hipóxia , Isquemia , Camundongos , Preservação Biológica , Irradiação Corporal Total
3.
Chimerism ; 2(3): 86-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22163067

RESUMO

Every year, bone marrow transplantation saves many lives worldwide. Unfortunately, a suitable donor is not always available. Since organs are routinely harvested from cadaveric organ donors, we decided to assess such a possibility for bone marrow. We analyzed the functional properties and phenotypic markers of murine hematopoietic stem and progenitor cells (HSPC) from cadaveric bone marrow and during storage in vitro in a suspension. It was demonstrated that HSPC exposed to a warm or cold ischemia in intact femur did not lose their phenotype and maintained their repopulating ability for two to twelve hours depending on the temperature. Additionally, fresh bone marrow remained fully viable in cell suspension for two days or four days at 37°C or 4°C, respectively. Based on these findings, cadaveric bone marrow could be considered as an alternative source of hematopoietic stem cells for transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA