Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 330(1): 294-303, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19332567

RESUMO

The adenosine A(2A) receptor has been implicated in the underlying biology of various neurological and psychiatric disorders, including Parkinson's disease (PD) and depression. Preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] are potent competitive antagonists of the human A(2A) receptor (K(i) = 1.1 and 0.6 nM, respectively) and have >1000-fold selectivity over all other adenosine receptors, making these compounds the most selective A(2A) receptor antagonists reported to date. Both compounds attenuate hypolocomotion induced by the A(2A) receptor agonist CGS-21680 [2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine], suggesting that they inhibit A(2A) receptor activity in vivo. Their high degree of selectivity and robust in vivo activity make preladenant and SCH 412348 useful tools to investigate the role of the A(2A) receptor system in animal models of PD and depression. Oral administration of preladenant and SCH 412348 (0.1-1 mg/kg) to rats potentiated 3,4-dihydroxy-L-phenylalanine (L-Dopa)-induced contralateral rotations after 6-hydroxydopamine lesions in the medial forebrain bundle and potently attenuated the cataleptic effects of haloperidol. Preladenant (1 mg/kg) inhibited L-Dopa-induced behavioral sensitization after repeated daily administration, which suggests a reduced risk of the development of dyskinesias. Finally, preladenant and SCH 412348 exhibited antidepressant-like profiles in models of behavioral despair, namely the mouse tail suspension test and the mouse and rat forced swim test. These studies demonstrate that preladenant and SCH 412348 are potent and selective A(2A) receptor antagonists and provide further evidence of the potential therapeutic benefits of A(2A) receptor inhibition in PD (with reduced risk of dyskinesias) and depression (one of the primary nonmotor symptoms of PD).


Assuntos
Antagonistas do Receptor A2 de Adenosina , Transtorno Depressivo/tratamento farmacológico , Modelos Animais de Doenças , Transtornos dos Movimentos/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Transtorno Depressivo/metabolismo , Humanos , Masculino , Camundongos , Transtornos dos Movimentos/metabolismo , Fármacos Neuroprotetores/química , Pirimidinas/química , Ratos , Receptor A2A de Adenosina/metabolismo , Triazóis/química
2.
Psychopharmacology (Berl) ; 179(1): 207-17, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15682298

RESUMO

RATIONALE: Modulation of metabotropic glutamate receptor (mGluR) subtypes represents a novel approach for the treatment of neurological and psychiatric disorders. OBJECTIVES: This study was conducted to investigate the role of the mGluR5 and mGluR1 subtypes in the modulation of pain and anxiety. METHODS: The mGluR5 antagonists, 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), and the mGluR1 antagonist, (4-methoxy-phenyl)-(6-methoxy-quinazolin-4-yl)-amine HCl (LY456236), were tested in models of pain [mouse formalin test, rat spinal nerve ligation (SNL)] and anxiety [Vogel conflict, conditioned lick suppression (CLS)], and their efficacious effects were compared to any associated side effects. RESULTS: The systemic administration of MPEP, MTEP, and LY456236 reduced hyperalgesia induced by formalin and mechanical allodynia following SNL. However, only LY456236 completely reversed the allodynia. In the anxiety models, MPEP (3--30 mg/kg), MTEP (3--10 mg/kg), and LY456236 (10--30 mg/kg) produced anxiolytic-like effects similar to the benzodiazepine, chlordiazepoxide (CDP, 6 mg/kg). However, only MPEP and MTEP were able to produce a level of anxiolysis comparable to CDP. In a series of tests examining potential side effects, MPEP and MTEP reduced body temperature and locomotor activity and impaired operant responding for food and rotarod performance at doses of 3--30 and 1--30 mg/kg, respectively. LY456236 reduced operant responding at 30 mg/kg. CONCLUSION: Both mGluR5 and mGluR1 antagonists are effective in models of pain and anxiety. However, an mGluR1 antagonist was more efficacious than the two mGluR5 antagonists in the pain models, which, conversely, appeared more efficacious in the anxiety models. These findings support the potential utility of mGluR5 and mGluR1 antagonists for both the treatment of chronic pain and as novel anxiolytics.


Assuntos
Analgésicos/farmacologia , Ansiolíticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Piridinas/toxicidade , Quinazolinas/toxicidade , Ratos , Receptor de Glutamato Metabotrópico 5 , Tiazóis/toxicidade
3.
Brain Res Mol Brain Res ; 118(1-2): 111-8, 2003 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-14559360

RESUMO

The melanocortin (MC) system is involved in several biological functions. Its possible role in nociception has recently attracted attention in the field. Published data suggest that melanocortin antagonists are analgesic and agonists are hyperalgesic. Gene expression information about the MC system components (receptor, agonist and antagonist) in pain relevant areas is at present limited. To deepen our knowledge, we studied the expression of MC system components in nai;ve, sham and neuropathic rat spinal cord and dorsal root ganglia (DRG) by PCR and quantitative real-time PCR. MC4 receptor, proopiomelanocortin (POMC) and agouti-related protein (AgRP) transcripts were detected in both spinal cord and DRG, whereas MC3 receptor was detected only in the spinal cord. To study the relationship between the MC system and chronic pain, we used the chronic constriction injury model and gene expression analysis was performed in rats showing both tactile allodynia and thermal hyperalgesia. MC4 and POMC transcript were upregulated in the spinal cord of neuropathic rats, whereas MC3 and AgRP expression were unaffected. Thus, this study demonstrates for the first time the presence of AgRP in the spinal cord and DRG, suggesting that it could play a role in the regulation of MC system activity. In addition, the upregulation of POMC and MC4, in parallel with the presence of tactile allodynia and thermal hyperalgesia, further supports the idea of MC system involvement in nociception.


Assuntos
Perfilação da Expressão Gênica , Neuralgia/genética , Neurônios Aferentes/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/genética , alfa-MSH/metabolismo , Proteína Relacionada com Agouti , Animais , Modelos Animais de Doenças , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Ligadura , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Pró-Opiomelanocortina/genética , Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Regulação para Cima/genética
4.
Peptides ; 23(9): 1589-96, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12217419

RESUMO

The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation. Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.


Assuntos
Naltrexona/análogos & derivados , Dor/tratamento farmacológico , Receptores Opioides/genética , Receptores Opioides/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Relação Dose-Resposta a Droga , Dinorfinas/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Naloxona/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oligopeptídeos/farmacologia , Peptídeos Opioides/farmacologia , Fatores de Tempo , Ducto Deferente/efeitos dos fármacos , Receptor de Nociceptina , Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA