Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 48(6): 2841-2852, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32112097

RESUMO

Base editing (BE) is a powerful tool for engineering single nucleotide variants (SNVs) and has been used to create targeted mutations in cell lines, organoids and animal models. Recent development of new BE enzymes has provided an extensive toolkit for genome modification; however, identifying and isolating edited cells for analysis has proven challenging. Here we report a 'Gene On' (GO) reporter system that indicates precise cytosine or adenine base editing in situ with high sensitivity and specificity. We test GO using an activatable GFP and use it to measure the kinetics, efficiency and PAM specificity of a range of new BE variants. Further, GO is flexible and can be easily adapted to induce expression of numerous genetically encoded markers, antibiotic resistance genes or enzymes, such as Cre recombinase. With these tools, GO can be exploited to functionally link BE events at endogenous genomic loci to cellular enzymatic activities in human and mouse cell lines and organoids. Thus, GO provides a powerful approach to increase the practicality and feasibility of implementing CRISPR BE in biomedical research.


Assuntos
Edição de Genes , Genes Reporter , Animais , Sequência de Bases , Linhagem Celular Tumoral , Resistência Microbiana a Medicamentos , Células HEK293 , Humanos , Integrases/metabolismo , Camundongos , Células NIH 3T3 , Recombinação Genética/genética
2.
Reprod Biomed Online ; 38(4): 606-612, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30826299

RESUMO

RESEARCH QUESTION: The study aimed to determine whether IVF or intrauterine growth restriction (IUGR) result in short neonatal telomeres, which could explain the higher risk of cardiovascular and metabolic disease described in these populations. DESIGN: This was an observational, analytical, cross-sectional, prospective study with controls in a tertiary hospital. The main outcome was to determine the leukocyte telomere length in 126 newborns and their mothers (n = 109). Newborns were conceived spontaneously or by IVF, and uncomplicated and IUGR pregnancies were studied. Telomere lengths were measured using high-throughput telomere quantitative fluorescent in-situ hybridization. RESULTS: There was no difference in average telomere length between newborns conceived by IVF or those with IUGR and spontaneously conceived healthy newborns (P = 0.466 and P = 0.732, respectively); this remained after controlling for confounders (P = 0.218 and P = 0.991, respectively). Mothers of newborns with IUGR had a shorter average telomere length than women with uncomplicated pregnancies (P = 0.023), which was confirmed after controlling for age, body mass index and smoking habit (P = 0.034). CONCLUSIONS: The results support the safety of IVF and IUGR in terms of the postnatal health of the newborns. The shorter telomeres of IUGR mothers may represent a higher cardiovascular risk, which would have clinical implications under the stress of pregnancy in otherwise healthy adults.


Assuntos
Fertilização in vitro , Retardo do Crescimento Fetal/diagnóstico , Encurtamento do Telômero , Telômero/ultraestrutura , Adulto , Estudos Transversais , Feminino , Retardo do Crescimento Fetal/patologia , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Masculino , Idade Materna , Mães , Gravidez , Estudos Prospectivos , Fumar , Centros de Atenção Terciária , Resultado do Tratamento
3.
Blood ; 120(15): 2990-3000, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22932806

RESUMO

TRF1 is part of the shelterin complex, which binds telomeres and it is essential for their protection. Ablation of TRF1 induces sister telomere fusions and aberrant numbers of telomeric signals associated with telomere fragility. Dyskeratosis congenita is characterized by a mucocutaneous triad, bone marrow failure (BMF), and presence of short telomeres because of mutations in telomerase. A subset of patients, however, show mutations in the shelterin component TIN2, a TRF1-interacting protein, presenting a more severe phenotype and presence of very short telomeres despite normal telomerase activity. Allelic variations in TRF1 have been found associated with BMF. To address a possible role for TRF1 dysfunction in BMF, here we generated a mouse model with conditional TRF1 deletion in the hematopoietic system. Chronic TRF1 deletion results in increased DNA damage and cellular senescence, but not increased apoptosis, in BM progenitor cells, leading to severe aplasia. Importantly, increased compensatory proliferation of BM stem cells is associated with rapid telomere shortening and further increase in senescent cells in vivo, providing a mechanism for the very short telomeres of human patients with mutations in the shelterin TIN2. Together, these results represent proof of principle that mutations in TRF1 lead to the main clinical features of BMF.


Assuntos
Medula Óssea/patologia , Senescência Celular , Modelos Animais de Doenças , Disceratose Congênita/etiologia , Sistema Hematopoético/patologia , Hemoglobinúria Paroxística/etiologia , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Anemia Aplástica , Animais , Apoptose , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Transplante de Medula Óssea , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Dano ao DNA , Disceratose Congênita/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hemoglobinúria Paroxística/mortalidade , Hemoglobinúria Paroxística/patologia , Humanos , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação/genética , Pancitopenia/etiologia , Pancitopenia/metabolismo , Pancitopenia/patologia , Células-Tronco/patologia , Taxa de Sobrevida , Telômero/genética , Proteínas de Ligação a Telômeros/genética
4.
Nat Biotechnol ; 42(3): 437-447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37563300

RESUMO

Although single-nucleotide variants (SNVs) make up the majority of cancer-associated genetic changes and have been comprehensively catalogued, little is known about their impact on tumor initiation and progression. To enable the functional interrogation of cancer-associated SNVs, we developed a mouse system for temporal and regulatable in vivo base editing. The inducible base editing (iBE) mouse carries a single expression-optimized cytosine base editor transgene under the control of a tetracycline response element and enables robust, doxycycline-dependent expression across a broad range of tissues in vivo. Combined with plasmid-based or synthetic guide RNAs, iBE drives efficient engineering of individual or multiple SNVs in intestinal, lung and pancreatic organoids. Temporal regulation of base editor activity allows controlled sequential genome editing ex vivo and in vivo, and delivery of sgRNAs directly to target tissues facilitates generation of in situ preclinical cancer models.


Assuntos
Edição de Genes , Neoplasias , Camundongos , Animais , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Neoplasias/genética , Neoplasias/terapia , Pulmão
5.
Clin Cancer Res ; 30(17): 3881-3893, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38949890

RESUMO

PURPOSE: Classic Hodgkin lymphoma (cHL) is a B-cell lymphoma that occurs primarily in young adults and, less frequently, in elderly individuals. A hallmark of cHL is the exceptional scarcity (1%-5%) of the malignant Hodgkin Reed-Sternberg (HRS) cells within a network of nonmalignant immune cells. Molecular determinants governing the relationship between HRS cells and their proximal microenvironment remain largely unknown. EXPERIMENTAL DESIGN: We performed spatially resolved multiplexed protein imaging and transcriptomic sequencing to characterize HRS cell states, cellular neighborhoods, and gene expression signatures of 23.6 million cells from 36 newly diagnosed Epstein-Barr virus (EBV)-positive and EBV-negative cHL tumors. RESULTS: We show that MHC-I expression on HRS cells is associated with immune-inflamed neighborhoods containing CD8+ T cells, MHC-II+ macrophages, and immune checkpoint expression (i.e., PD1 and VISTA). We identified spatial clustering of HRS cells, consistent with the syncytial variant of cHL, and its association with T-cell-excluded neighborhoods in a subset of EBV-negative tumors. Finally, a subset of both EBV-positive and EBV-negative tumors contained regulatory T-cell-high neighborhoods harboring HRS cells with augmented proliferative capacity. CONCLUSIONS: Our study links HRS cell properties with distinct immunophenotypes and potential immune escape mechanisms in cHL.


Assuntos
Doença de Hodgkin , Células de Reed-Sternberg , Microambiente Tumoral , Humanos , Doença de Hodgkin/patologia , Doença de Hodgkin/imunologia , Doença de Hodgkin/virologia , Células de Reed-Sternberg/patologia , Microambiente Tumoral/imunologia , Herpesvirus Humano 4/isolamento & purificação , Feminino , Masculino , Perfilação da Expressão Gênica , Adulto , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Idoso , Transcriptoma
6.
Sci Transl Med ; 15(684): eade1857, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812344

RESUMO

Obesity, defined as a body mass index (BMI) ≥ 30, is an established risk factor for breast cancer among women in the general population after menopause. Whether elevated BMI is a risk factor for women with a germline mutation in BRCA1 or BRCA2 is less clear because of inconsistent findings from epidemiological studies and a lack of mechanistic studies in this population. Here, we show that DNA damage in normal breast epithelia of women carrying a BRCA mutation is positively correlated with BMI and with biomarkers of metabolic dysfunction. In addition, RNA sequencing showed obesity-associated alterations to the breast adipose microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, which affected neighboring breast epithelial cells. In breast tissue explants cultured from women carrying a BRCA mutation, we found that blockade of estrogen biosynthesis or estrogen receptor activity decreased DNA damage. Additional obesity-associated factors, including leptin and insulin, increased DNA damage in human BRCA heterozygous epithelial cells, and inhibiting the signaling of these factors with a leptin-neutralizing antibody or PI3K inhibitor, respectively, decreased DNA damage. Furthermore, we show that increased adiposity was associated with mammary gland DNA damage and increased penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic evidence in support of a link between elevated BMI and breast cancer development in BRCA mutation carriers. This suggests that maintaining a lower body weight or pharmacologically targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this population.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Animais , Camundongos , Mutação em Linhagem Germinativa , Leptina , Glândulas Mamárias Humanas/patologia , Fosfatidilinositol 3-Quinases , Proteína BRCA2 , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Dano ao DNA , Epitélio/patologia , Obesidade , Estrogênios , Mutação , Microambiente Tumoral
7.
J Cell Sci ; 123(Pt 24): 4321-31, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098640

RESUMO

Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells is a pathological process that occurs during peritoneal dialysis. EMT leads to peritoneal fibrosis, ultrafiltration failure and eventually to the discontinuation of therapy. Signaling pathways involved in mesothelial EMT are thus of great interest, but are mostly unknown. We used primary mesothelial cells from human omentum to analyze the role of the p38 MAPK signaling pathway in the induction of EMT. The use of specific inhibitors, a dominant-negative p38 mutant and lentiviral silencing of p38α demonstrated that p38 promotes E-cadherin expression both in untreated cells and in cells co-stimulated with the EMT-inducing stimuli transforming growth factor (TGF)-ß1 and interleukin (IL)-1ß. p38 inhibition also led to disorganization and downregulation of cytokeratin filaments and zonula occludens (ZO)-1, whereas expression of vimentin was increased. Analysis of transcription factors that repress E-cadherin expression showed that p38 blockade inhibited expression of Snail1 while increasing expression of Twist. Nuclear translocation and transcriptional activity of p65 NF-κB, an important inducer of EMT, was increased by p38 inhibition. Moreover, p38 inhibition increased the phosphorylation of TGF-ß-activated kinase 1 (TAK1), NF-κB and IκBα. The effect of p38 inhibition on E-cadherin expression was rescued by modulating the TAK1-NF-κB pathway. Our results demonstrate that p38 maintains E-cadherin expression by suppressing TAK1-NF-κB signaling, thus impeding the induction of EMT in human primary mesothelial cells. This represents a novel role of p38 as a brake or 'gatekeeper' of EMT induction by maintaining E-cadherin levels.


Assuntos
Caderinas/metabolismo , Transição Epitelial-Mesenquimal , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos CD , Caderinas/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Citocinas/farmacologia , DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinas/metabolismo , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Transporte Proteico/efeitos dos fármacos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
8.
Cancer Res ; 81(9): 2275-2288, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526512

RESUMO

Serine is a nonessential amino acid generated by the sequential actions of phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT1), and phosphoserine phosphatase (PSPH). Increased serine biosynthesis occurs in several cancers and supports tumor growth. In addition, cancer cells can harness exogenous serine to enhance their metabolism and proliferation. Here we tested the relative contributions of exogenous and endogenous sources of serine on the biology of colorectal cancer. In murine tumors, Apc status was identified as a determinant of the expression of genes controlling serine synthesis. In patient samples, PSAT1 was overexpressed in both colorectal adenomas and adenocarcinomas. Combining genetic deletion of PSAT1 with exogenous serine deprivation maximally suppressed the proliferation of colorectal cancer cells and induced profound metabolic defects including diminished nucleotide production. Inhibition of serine synthesis enhanced the transcriptional changes following exogenous serine removal as well as alterations associated with DNA damage. Both loss of PSAT1 and removal of serine from the diet were necessary to suppress colorectal cancer xenograft growth and enhance the antitumor activity of 5-fluorouracil (5-FU). Restricting endogenous and exogenous serine in vitro augmented 5-FU-induced cell death, DNA damage, and metabolic perturbations, likely accounting for the observed antitumor effect. Collectively, our results suggest that both endogenous and exogenous sources of serine contribute to colorectal cancer growth and resistance to 5-FU. SIGNIFICANCE: These findings provide insights into the metabolic requirements of colorectal cancer and reveal a novel approach for its treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2275/F1.large.jpg.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/metabolismo , Dieta/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Serina/deficiência , Idoso , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos Transgênicos , Pessoa de Meia-Idade , Gravidez , Serina/genética , Transaminases/deficiência , Transaminases/genética , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 14(12): e0226645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891587

RESUMO

Tankyrase (TNKS) 1/2 are positive regulators of WNT signaling by controlling the activity of the ß-catenin destruction complex. TNKS inhibitors provide an opportunity to suppress hyperactive WNT signaling in tumors, however, they have shown limited anti-proliferative activity as a monotherapy in human cancer cell lines. Here we perform a kinome-focused CRISPR screen to identify potential effective drug combinations with TNKS inhibition. We show that the loss of CDK4, but not CDK6, synergizes with TNKS1/2 blockade to drive G1 cell cycle arrest and senescence. Through precise modelling of cancer-associated mutations using cytidine base editors, we show that this therapeutic approach is absolutely dependent on suppression of canonical WNT signaling by TNKS inhibitors and is effective in cells from multiple epithelial cancer types. Together, our results suggest that combined WNT and CDK4 inhibition might provide a potential therapeutic strategy for difficult-to-treat epithelial tumors.


Assuntos
Neoplasias Colorretais/enzimologia , Quinase 4 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tanquirases/antagonistas & inibidores , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Senescência Celular , Neoplasias Colorretais/terapia , Quinase 6 Dependente de Ciclina/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
10.
Cancer Discov ; 9(10): 1358-1371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337618

RESUMO

The majority of colorectal cancers show hyperactivated WNT signaling due to inactivating mutations in the adenomatous polyposis coli (APC) tumor suppressor. Genetically restoring APC suppresses WNT and induces rapid and sustained tumor regression, implying that reengaging this endogenous tumor-suppressive mechanism may be an effective therapeutic strategy. Here, using new animal models, human cell lines, and ex vivo organoid cultures, we show that tankyrase (TNKS) inhibition can control WNT hyperactivation and provide long-term tumor control in vivo, but that effective responses are critically dependent on how APC is disrupted. Mutant APC proteins truncated within the mutation cluster region physically engage the destruction complex and suppress the WNT transcriptional program, while APC variants with early truncations (e.g., Apc Min) show limited interaction with AXIN1 and ß-catenin, and do not respond to TNKS blockade. Together, this work shows that TNKS inhibition, like APC restoration, can reestablish endogenous control of WNT/ß-catenin signaling, but that APC genotype is a crucial determinant of this response. SIGNIFICANCE: This study reveals how subtle changes to the mutations in a critical colorectal tumor suppressor, APC, influence the cellular response to a targeted therapy. It underscores how investigating the specific genetic alterations that occur in human cancer can identify important biological mechanisms of drug response and resistance.This article is highlighted in the In This Issue feature, p. 1325.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tanquirases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Marcação de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Interferência de RNA , Tanquirases/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Clin Nutr ; 38(2): 958-961, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29478886

RESUMO

BACKGROUND & AIMS: Shortening of leukocyte telomere length (LTL) is a biomarker of aging. Epidemiologic studies of LTL in relation to dietary fatty acids have reported conflicting results. The red blood cell (RBC) fatty acid status is a valid objective biomarker of long-term dietary intake of C18:2n-6, C18:3n-3 and long-chain n-3 polyunsaturated fatty acids (C20:5n-3 and C22:6n-3). In healthy older individuals, we investigated whether LTL relates to the RBC proportions of the main dietary polyunsaturated fatty acids (PUFA), and to the RBC proportion of arachidonic acid (C20:4n-6), a fatty acid that can generate pro-inflammatory lipid mediators once released from cell membranes. DESIGN: Cross-sectional study in 344 subjects (mean age 68.8 y, 68.6% women) who participated in a randomized controlled trial testing whether a diet enriched in walnuts can delay the onset of age-related diseases (https://clinicaltrials.gov/ct2/show/NCT01634841). At baseline, we assessed LTL by high-throughput quantitative fluorescence and determined fatty acids in RBCs by gas chromatography. RESULTS: In multivariate models adjusted for age and gender, the RBC proportions of dietary PUFA were unrelated to LTL. In contrast, the RBC proportion of arachidonic acid inversely related to LTL (regression coefficient [95% confidence interval], -0.10 (-0.19 to -0.01), P = 0.023). CONCLUSION: An increasing proportion of C20:4n-6 in RBCs is associated with shorter telomeres. Further research is needed to investigate the role of this fatty acid and its derived lipid mediators in the aging process.


Assuntos
Envelhecimento/fisiologia , Ácido Araquidônico/sangue , Eritrócitos/química , Leucócitos/química , Telômero/química , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha/epidemiologia
12.
Trends Mol Med ; 24(9): 731-733, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30017531

RESUMO

Two recent reports show that, in some contexts, CRISPR-mediated genome editing can lead to a p53-mediated stress response and cell-cycle arrest. These findings may help to explain why CRISPR-mediated genetic manipulation in different cell types leads to dissimilar outcomes, and highlights the need for a better understanding of the factors that influence effective genome editing in vitro and in vivo.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Sistemas CRISPR-Cas , Dano ao DNA , Proteína Supressora de Tumor p53/genética
13.
Nutrients ; 10(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518050

RESUMO

Randomized controlled trials on diet and shortening of leukocyte telomere length (LTL) mostly focus on marine-derived n-3 polyunsaturated fatty acids (PUFA). Walnuts are a sustainable source of n-3 PUFA. We investigated whether inclusion of walnuts (15% of energy) in the diet for 2 years would maintain LTL in cognitively healthy elders (63⁻79 years old) compared to a control group (habitual diet, abstaining from walnuts). This opportunistic sub-study was conducted within the Walnuts and Healthy Aging study, a dual-centre (Barcelona, Spain and Loma Linda University, California) parallel trial. A sub-set of the Barcelona site participants were randomly assigned to the walnut (n = 80) or control group (n = 69). We assessed LTL at baseline and at 2 years and we conducted repeated-measures ANCOVA with 2 factors: time (baseline, 2 years) and group (control, walnut) and their interaction. Adjusted means (95% confidence interval) of LTL (in kb) in controls were 7.360 (7.084,7.636) at baseline and 7.061 (6.835,7.288) after 2 years; corresponding values in the walnut group were 7.064 (6.807,7.320) and 7.074 (6.864,7.284). The time × intervention interaction was nearly significant (p = 0.079), suggestive of a trend of walnut consumption in preserving LTL. This exploratory research finding should be confirmed in trials with adequate statistical power.


Assuntos
Dieta , Juglans , Leucócitos/química , Telômero/genética , Idoso , Envelhecimento/fisiologia , Biomarcadores/sangue , California , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha , Ácido alfa-Linolênico/sangue
14.
Nat Biotechnol ; 36(9): 888-893, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969439

RESUMO

CRISPR base editing enables the creation of targeted single-base conversions without generating double-stranded breaks. However, the efficiency of current base editors is very low in many cell types. We reengineered the sequences of BE3, BE4Gam, and xBE3 by codon optimization and incorporation of additional nuclear-localization sequences. Our collection of optimized constitutive and inducible base-editing vector systems dramatically improves the efficiency by which single-nucleotide variants can be created. The reengineered base editors enable target modification in a wide range of mouse and human cell lines, and intestinal organoids. We also show that the optimized base editors mediate efficient in vivo somatic editing in the liver in adult mice.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Linhagem Celular , Variação Genética , Humanos , Camundongos
16.
Nat Cancer ; 2(12): 1287, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121911
17.
Genom Data ; 6: 21-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26697322

RESUMO

Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

18.
EMBO Mol Med ; 7(1): 102-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25550395

RESUMO

Peritoneal dialysis (PD) is a form of renal replacement therapy whose repeated use can alter dialytic function through induction of epithelial-mesenchymal transition (EMT) and fibrosis, eventually leading to PD discontinuation. The peritoneum from Cav1-/- mice showed increased EMT, thickness, and fibrosis. Exposure of Cav1-/- mice to PD fluids further increased peritoneal membrane thickness, altered permeability, and increased the number of FSP-1/cytokeratin-positive cells invading the sub-mesothelial stroma. High-throughput quantitative proteomics revealed increased abundance of collagens, FN, and laminin, as well as proteins related to TGF-ß activity in matrices derived from Cav1-/- cells. Lack of Cav1 was associated with hyperactivation of a MEK-ERK1/2-Snail-1 pathway that regulated the Smad2-3/Smad1-5-8 balance. Pharmacological blockade of MEK rescued E-cadherin and ZO-1 inter-cellular junction localization, reduced fibrosis, and restored peritoneal function in Cav1-/- mice. Moreover, treatment of human PD-patient-derived MCs with drugs increasing Cav1 levels, as well as ectopic Cav1 expression, induced re-acquisition of epithelial features. This study demonstrates a pivotal role of Cav1 in the balance of epithelial versus mesenchymal state and suggests targets for the prevention of fibrosis during PD.


Assuntos
Caveolina 1/deficiência , Transição Epitelial-Mesenquimal , Diálise Peritoneal/efeitos adversos , Peritônio/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Caveolina 1/genética , Células Epiteliais/metabolismo , Fibrose , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peritônio/enzimologia , Peritônio/metabolismo , Peritônio/patologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
20.
Cell Rep ; 8(2): 487-500, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043184

RESUMO

Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4(cKO)) in stratified epithelia. Sox4(cKO) mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.


Assuntos
Células-Tronco Adultas/metabolismo , Envelhecimento/genética , Carcinogênese/genética , Folículo Piloso/metabolismo , Fatores de Transcrição SOXC/metabolismo , Células-Tronco Adultas/citologia , Animais , Carcinogênese/metabolismo , Ciclo Celular , Reparo do DNA , Folículo Piloso/citologia , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Fatores de Transcrição SOXC/genética , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA