Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biomacromolecules ; 21(12): 5323-5335, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33237736

RESUMO

Microgels are emerging as an outstanding platform for tissue regeneration because they overcome issues associated with conventional bulk/macroscopic hydrogels such as limited cell-cell contact and cell communication and low diffusion rates. Owing to the enhanced mass transfer and injectability via a minimally invasive procedure, these microgels are becoming a promising approach for bone regeneration applications. Nevertheless, there still remains a huge gap between the understanding of how the hydrogel matrix composition can influence cell response and overall tissue formation when switching from bulk formats to microgel format, which is often neglected or rarely studied. Here, we fabricated polyethylene glycol-based microgels and bulk hydrogels incorporating gelatin and hyaluronic acid (HA), either individually or together, and assessed the impact of both hydrogel composition and format upon the osteogenic differentiation of encapsulated human bone marrow-derived mesenchymal stem cells (hBMSCs). Osteogenesis was significantly greater in microgels than bulk hydrogels for both gelatin alone (Gel) and gelatin HA composite (Gel:HA) hydrogels, as determined by the expression of Runt-related transcription factor (Runx2) and alkaline phosphatase (ALP) genes and mineral deposition. Interestingly, Gel and Gel:HA hydrogels behaved differently between bulk and microgel format. In bulk format, overall osteogenic outcomes were better in Gel:HA hydrogels, but in microgel format, while the level of osteogenic gene expression was equivalent between both compositions, the degree of mineralization was reduced in Gel:HA microgels. Investigation into the affinity of hydroxyapatite for the different matrix compositions indicated that the decreased mineralization of Gel:HA microgels was likely due to a low affinity of hydroxyapatite to bind to HA and support mineral deposition, which has a greater impact on microgels than bulk hydrogels. Together, these findings suggest that both hydrogel composition and format can determine the success of tissue formation and that there is a complex interplay of these two factors on both cell behavior and matrix deposition. This has important implications for tissue engineering, showing that hydrogel composition and geometry must be evaluated together when optimizing conditions for cell differentiation and tissue formation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Humanos , Hidrogéis , Engenharia Tecidual
2.
Biomacromolecules ; 19(11): 4277-4285, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30226977

RESUMO

On-demand photo-uncaging of reactive thiols have been employed in engineering biomaterial scaffolds for regulation of cellular activities. A drawback of the current photo-uncaging chemistry is the utilization of high energy UV light or 2-photon laser light, which may be harmful to cells and cause undesired side reactions within the biological environment. We introduce an effective approach for the caging of thiol using monobromobimane, which can be removed under irradiation of light at λ = 420 nm and in the presence of electrophiles, such as acrylate, propiolate and maleimide, for trapping of the newly release thiol. This chemical approach can be used in visible light-induced polymer coupling and cross-linking for the preparation of cell-laden hydrogels.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Luz , Polímeros/química , Compostos de Sulfidrila/química , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Processos Fotoquímicos , Engenharia Tecidual
3.
Biomacromolecules ; 18(3): 757-766, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28195689

RESUMO

Swelling of hydrogels leads to a decrease in mechanical performance coupled with complications in solute diffusion. In addition, hydrogel swelling affects patient safety in biomedical applications such as compression of tissue and fluid blockage. A conventional strategy for suppressing swelling is to introduce a thermoresponsive polymer with a lower critical solution temperature (LCST) within the network structure to counter the water uptake at elevated temperature. However, altering the gel's mechanical strength via modification of the network structure often affects the water uptake behavior and thus a nonswelling platform with tunable mechanical properties suitable for various biomedical applications is desirable. In this study we applied the commercially available triblock PEG-PPG-PEG (Pluronic) as a cross-linker for the preparation of nucleophilic thiol-yne click cross-linked hydrogels with suppressed swelling at physiologically relevant temperature. The mechanical properties and degradation rate of these nonswelling hydrogels can be tuned by judicious combinations of the available linkers. The Pluronic linkers can be applied to prepare biologically relevant gelatin based hydrogels with suppressed swelling under physiological conditions that support attachment of fibroblast cells in 2D culture and controlled release of albumin, paving the way for the development of reliable and better performing soft biomaterials.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Hidrogéis/química , Poloxâmero/química , Polietilenoglicóis/química , Propilenoglicóis/química , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Água/química
4.
Adv Funct Mater ; 25(6): 977-986, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26327819

RESUMO

Hydrogels are often employed as temporary platforms for cell proliferation and tissue organization in vitro. Researchers have incorporated photodegradable moieties into synthetic polymeric hydrogels as a means of achieving spatiotemporal control over material properties. In this study protein-based photodegradable hydrogels composed of methacrylated gelatin (GelMA) and a crosslinker containing o-nitrobenzyl ester groups have been developed. The hydrogels are able to degrade rapidly and specifically in response to UV light and can be photopatterned to a variety of shapes and dimensions in a one-step process. Micropatterned photodegradable hydrogels are shown to improve cell distribution, alignment and beating regularity of cultured neonatal rat cardiomyocytes. Overall this work introduces a new class of photodegradable hydrogel based on natural and biofunctional polymers as cell culture substrates for improving cellular organization and function.

5.
Biomacromolecules ; 16(7): 2246-53, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26056855

RESUMO

In this study, we present a method for the fabrication of in situ forming gelatin and poly(ethylene glycol)-based hydrogels utilizing bioorthogonal, strain-promoted alkyne-azide cycloaddition as the cross-linking reaction. By incorporating nitrobenzyl moieties within the network structure, these hydrogels can be designed to be degradable upon irradiation with low intensity UV light, allowing precise photopatterning. Fibroblast cells encapsulated within these hydrogels were viable at 14 days and could be readily harvested using a light trigger. Potential applications of this new class of injectable hydrogel include its use as a 3D culturing platform that allows the capture and release of cells, as well as light-triggered cell delivery in regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Gelatina/química , Hidrogéis/síntese química , Animais , Engenharia Celular , Células Cultivadas , Química Click/métodos , Reação de Cicloadição/métodos , Hidrogéis/química , Camundongos , Fotólise
6.
Biomacromolecules ; 16(7): 2109-18, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26020464

RESUMO

While electrospun fibers are of interest as scaffolds for tissue engineering applications, nonspecific surface interactions such as protein adsorption often prevent researchers from controlling the exact interactions between cells and the underlying material. In this study we prepared electrospun fibers from a polystyrene-based macroinitiator, which were then grafted with polymer brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). These brush coatings incorporated a trimethylsilyl-protected PEG-alkyne monomer, allowing azide functional molecules to be covalently attached, while simultaneously reducing nonspecific protein adsorption on the fibers. Cells were able to attach and spread on fibrous substrates functionalized with a pendant RGD-containing peptide, while spreading was significantly reduced on nonfunctionalized fibers and those with the equivalent RGE control peptide. This effect was observed both in the presence and absence of serum in the culture media, indicating that protein adsorption on the fibers was minimal and cell adhesion within the fibrous scaffold was mediated almost entirely through the cell-adhesive RGD-containing peptide.


Assuntos
Fibroblastos/fisiologia , Poliestirenos/química , Alicerces Teciduais/química , Adsorção , Animais , Adesão Celular , Linhagem Celular , Fibroblastos/citologia , Teste de Materiais , Camundongos , Propriedades de Superfície
7.
Macromol Rapid Commun ; 36(19): 1729-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26250120

RESUMO

This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2-5 min by a simple two-solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.


Assuntos
Hidrogéis/química , Nitrilas/química , Norbornanos/química , Animais , Linhagem Celular , Reação de Cicloadição , Hidrogéis/síntese química , Camundongos , Microscopia de Fluorescência , Óxidos/química , Reologia
8.
J Neurochem ; 130(2): 215-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24588462

RESUMO

Astrocytes are a target for regenerative neurobiology because in brain injury their phenotype arbitrates brain integrity, neuronal death and subsequent repair and reconstruction. We explored the ability of 3D scaffolds to direct astrocytes into phenotypes with the potential to support neuronal survival. Poly-ε-caprolactone scaffolds were electrospun with random and aligned fibre orientations on which murine astrocytes were sub-cultured and analysed at 4 and 12 DIV. Astrocytes survived, proliferated and migrated into scaffolds adopting 3D morphologies, mimicking in vivo stellated phenotypes. Cells on random poly-ε-caprolactone scaffolds grew as circular colonies extending processes deep within sub-micron fibres, whereas astrocytes on aligned scaffolds exhibited rectangular colonies with processes following not only the direction of fibre alignment but also penetrating the scaffold. Cell viability was maintained over 12 DIV, and cytochemistry for F-/G-actin showed fewer stress fibres on bioscaffolds relative to 2D astrocytes. Reduced cytoskeletal stress was confirmed by the decreased expression of glial fibrillary acidic protein. PCR demonstrated up-regulation of genes (excitatory amino acid transporter 2, brain-derived neurotrophic factor and anti-oxidant) reflecting healthy biologies of mature astrocytes in our extended culture protocol. This study illustrates the therapeutic potential of bioengineering strategies using 3D electrospun scaffolds which direct astrocytes into phenotypes supporting brain repair. Astrocytes exist in phenotypes with pro-survival and destructive components, and their biology can be modulated by changing phenotype. Our findings demonstrate murine astrocytes adopt a healthy phenotype when cultured in 3D. Astrocytes proliferate and extend into poly-ε-caprolactone scaffolds displaying 3D stellated morphologies with reduced GFAP expression and actin stress fibres, plus a cytotrophic gene profile. Bioengineered 3D scaffolds have potential to direct inflammation to aid regenerative neurobiology.


Assuntos
Astrócitos/fisiologia , Técnicas Citológicas , Animais , Astrócitos/ultraestrutura , Western Blotting , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Reação a Corpo Estranho/patologia , Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/biossíntese , Poliésteres/química , Cultura Primária de Células , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
Stem Cells ; 31(4): 703-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307500

RESUMO

Mitochondrial DNA haplotypes are associated with various phenotypes, such as altered susceptibility to disease, environmental adaptations, and aging. Accumulating evidence suggests that mitochondrial DNA is essential for cell differentiation and the cell phenotype. However, the effects of different mitochondrial DNA haplotypes on differentiation and development remain to be determined. Using embryonic stem cell lines possessing the same Mus musculus chromosomes but harboring one of Mus musculus, Mus spretus, or Mus terricolor mitochondrial DNA haplotypes, we have determined the effects of different mitochondrial DNA haplotypes on chromosomal gene expression, differentiation, and mitochondrial metabolism. In undifferentiated and differentiating embryonic stem cells, we observed mitochondrial DNA haplotype-specific expression of genes involved in pluripotency, differentiation, mitochondrial energy metabolism, and DNA methylation. These mitochondrial DNA haplotypes also influenced the potential of embryonic stem cells to produce spontaneously beating cardiomyocytes. The differences in gene expression patterns and cardiomyocyte production were independent of ATP content, oxygen consumption, and respiratory capacity, which until now have been considered to be the primary roles of mitochondrial DNA. Differentiation of embryonic stem cells harboring the different mitochondrial DNA haplotypes in a 3D environment significantly increased chromosomal gene expression for all haplotypes during differentiation. However, haplotype-specific differences in gene expression patterns were maintained in this environment. Taken together, these results provide significant insight into the phenotypic consequences of mitochondrial DNA haplotypes and demonstrate their influence on differentiation and development. We propose that mitochondrial DNA haplotypes play a pivotal role in the process of differentiation and mediate the fate of the cell.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Haplótipos/genética , Células-Tronco Pluripotentes/citologia
10.
Adv Healthc Mater ; : e2400171, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657207

RESUMO

Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.

11.
Biomacromolecules ; 14(7): 2305-16, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23701412

RESUMO

We show for the first time the possibility of using networks of amyloid fibrils, adsorbed to solid supports and with plasma polymer coatings, for the fabrication of chemically homogeneous surfaces with well-defined nanoscale surface features reminiscent of the topography of the extracellular matrix. The robust nature of the fibrils allows them to withstand the plasma polymer deposition conditions used with no obvious deleterious effect, thus enabling the underlying fibril topography to be replicated at the polymer surface. This effect was seen despite the polymer coating thickness being an order of magnitude greater than the fibril network. The in vitro culture of fibroblast cells on these surfaces resulted in increased attachment and spreading compared to flat plasma polymer films with the same chemical composition. The demonstrated technique allows for the rapid and reproducible fabrication of substrates with nanoscale fibrous topography that we believe will have applications in the development of new biomaterials allowing, for example, the investigation of the effect of extracellular matrix mimicking nanoscale morphology on cellular phenotype.


Assuntos
Amiloide/química , Materiais Biocompatíveis/química , Nanoestruturas , Animais , Adesão Celular/fisiologia , Linhagem Celular , Matriz Extracelular/química , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polímeros/química , Propriedades de Superfície
12.
Ultrasound Med Biol ; 49(1): 18-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210247

RESUMO

Ultrasound-guided needle interventions are common procedures in medicine, and tissue-mimicking phantoms are widely used for simulation training to bridge the gap between theory and clinical practice in a controlled environment. This review assesses tissue-mimicking materials from 24 studies as candidates for a high-fidelity ultrasound phantom, including methods for evaluating relevant acoustic and mechanical properties and to what extent the reported materials mimic the superficial layers of biological tissue. Speed of sound, acoustic attenuation, Young's modulus, hardness, needle interaction forces, training efficiency and material limitations were systematically evaluated. Although gelatin and agar have the closest acoustic values to tissue, mechanical properties are limited, and strict storage protocols must be employed to counteract dehydration and microbial growth. Polyvinyl chloride (PVC) has superior mechanical properties and is a suitable alternative if durability is desired and some ultrasound realism to human tissue may be sacrificed. Polyvinyl alcohol (PVA), while also requiring hydration, performs well across all categories. Furthermore, we propose a framework for the evaluation of future ultrasound-guided needle intervention tissue phantoms to increase the fidelity of training programs and thereby improve clinical performance.


Assuntos
Agulhas , Ultrassonografia de Intervenção , Humanos , Imagens de Fantasmas , Ultrassonografia , Módulo de Elasticidade , Ultrassonografia de Intervenção/métodos
13.
Adv Healthc Mater ; 12(28): e2300801, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37369123

RESUMO

The composition, elasticity, and organization of the extracellular matrix within the central nervous system contribute to the architecture and function of the brain. From an in vitro modeling perspective, soft biomaterials are needed to mimic the 3D neural microenvironments. While many studies have investigated 3D culture and neural network formation in bulk hydrogel systems, these approaches have limited ability to position cells to mimic sophisticated brain architectures. In this study, cortical neurons and astrocytes acutely isolated from the brains of rats are bioprinted in a hydrogel to form 3D neuronal constructs. Successful bioprinting of cellular and acellular strands in a multi-bioink approach allows the subsequent formation of gray- and white-matter tracts reminiscent of cortical structures. Immunohistochemistry shows the formation of dense, 3D axon networks. Calcium signaling and extracellular electrophysiology in these 3D neuronal networks confirm spontaneous activity in addition to evoked activities under pharmacological and electrical stimulation. The system and bioprinting approaches are capable of fabricating soft, free-standing neuronal structures of different bioink and cell types with high resolution and throughput, which provide a promising platform for understanding fundamental questions of neural networks, engineering neuromorphic circuits, and for in vitro drug screening.


Assuntos
Bioimpressão , Hidrogéis , Ratos , Animais , Hidrogéis/química , Materiais Biocompatíveis/química , Neurônios , Matriz Extracelular/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
14.
ACS Biomater Sci Eng ; 9(11): 6024-6033, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37788301

RESUMO

Microgels are microscale particles of hydrogel that can be laden with cells and used to create macroporous tissue constructs. Their ability to support cell-ECM and cell-cell interactions, along with the high levels of nutrient and metabolite exchange facilitated by their high surface area-to-volume ratio, means that they are attracting increasing attention for a variety of tissue regeneration applications. Here, we present methods for fabricating and modifying the structure of microfluidic devices using commonly available laboratory consumables including pipet tips and PTFE and silicon tubing to produce microgels. Different microfluidic devices realized the controlled generation of a wide size range (130-800 µm) of microgels for cell encapsulation. Subsequently, we describe the process of encapsulating mesenchymal stromal cells in microgels formed by photo-cross-linking of gelatin-norbornene and PEG dithiol. The introduced pipet-based chip offers simplicity, tunability, and versatility, making it easily assembled in most laboratories to effectively produce cell-laden microgels for various applications in tissue engineering.


Assuntos
Microgéis , Encapsulamento de Células , Gelatina/química , Engenharia Tecidual/métodos , Hidrogéis/química
15.
Biofabrication ; 14(3)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35545019

RESUMO

Manyin vitromodels of neural physiology utilize neuronal networks established on two-dimensional substrates. Despite the simplicity of these 2D neuronal networks, substrate stiffness may influence cell morphology, network interactions and how neurons communicate and function. With this perspective, three-dimensional (3D) gel encapsulation is a powerful to recapitulating aspects ofin vivofeatures, yet such an approach is often limited in terms of the level of resolution and feature size relevant for modelling aspects of brain architecture. Here, we report 3D bioplotting of rat primary cortical neural cells using a hydrogel system comprising gelatin norbornene (GelNB) and poly (ethylene glycol) dithiol (PEGdiSH). This bioink benefits from a rapid photo-click chemistry, yielding eight-layer crosshatch neural scaffolds and a filament width of 350µm. The printability of this system depends on hydrogel concentration, printing temperature, extrusion pressure and speed. These parameters were studied via quantitative comparison between rheology and filament dimensions to determine the optimal printing conditions. Under optimal conditions, cell viability of bioprinted primary cortical neurons at day 1 (68 ± 2%) and at day 7 (68 ± 1%) were comparable to the 2D control group (72 ± 7%). The present study relates material rheology and filament dimensions to generate compliant free-standing neural constructs through bioplotting of low-concentration GelNB-PEGdiSH, which may provide a step forward to study 3D neuronal function and network formation.


Assuntos
Bioimpressão , Animais , Bioimpressão/métodos , Gelatina , Hidrogéis , Impressão Tridimensional , Ratos , Reologia
16.
Transl Oncol ; 24: 101477, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905640

RESUMO

Chimeric antigen receptor (CAR-) T cells are revolutionizing cancer treatment, as a direct result of their clinical impact on the treatment of hematological malignancies. However for solid tumors, CAR-T cell therapeutic efficacy remains limited, primarily due to the complex immunosuppressive tumor microenvironment, inefficient access to tumor cells and poor persistence of the killer cells. In this in vitro study, an injectable, gelatin-based micro-hydrogel system that can encapsulate and deliver effective CAR-T therapy is investigated. CAR-T cells targeting TAG-72, encapsulated in these microgels possessed high viability (> 87%) after 7 days, equivalent to those grown under normal expansion conditions, with retention of the T cell phenotype and functionality. Microgel recovered CAR-T cells demonstrated potent on-target cytotoxicity against human ovarian cancer in vitro and on three-dimensional tumor spheroids, by completely eliminating tumor cells. The gelatin-based micro-hydrogels have the potential to serve as carrier systems to augment CAR-T immunotherapeutic treatment of solid tumors.

17.
Nanoscale ; 14(42): 15845-15858, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259692

RESUMO

The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating. Electrochemically reduced graphene oxide (ErGO) coated Pt/Ir neural electrodes exhibited 15.2-fold increase in charge storage capacity (CSC) and 90% decrease in impedance with only 3.8% increase in electrode diameter. Patch clamp electrophysiology and calcium imaging of primary rat hippocampus neurons cultured on ErGO demonstrated that there was no adverse impact on the functional development of neurons. Immunostaining showed a balanced growth of excitatory and inhibitory neurons, and astrocytes. Acute recordings from the auditory cortex and chronic recordings (19 days) from the somatosensory cortex found ErGO coating improved the performance of neural electrodes in signal-to-noise ratio (SNR) and amplitude of signals. The proposed approach not only provides an in-depth evaluation of the effect of ErGO coating on neural electrodes but also widens the coating methods of commercial neural electrodes.


Assuntos
Grafite , Animais , Ratos , Grafite/química , Eletrodos , Espectroscopia Fotoeletrônica , Eletroforese
18.
ACS Chem Neurosci ; 12(22): 4224-4235, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34634903

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder, in which dopaminergic midbrain neurons degenerate, leading to dopamine depletion that is associated with neuronal death. In this Review, we initially describe the pathogenesis of PD and established therapies that unfortunately only delay progression of the disease. With a rapidly escalating incidence in PD, there is an urgent need to develop new therapies that not only halt progression but even reverse degeneration. Biomaterials are playing critical roles in these new therapies which include controlled and site-specific delivery of neurotrophins, increased engraftment of implanted neural stem cells, and redirection of endogenous stem cell populations away from their niche to encourage reparative mechanisms. This Review will therefore cover important design features of biomaterials used in regenerative medicine and tissue engineering strategies targeted at PD.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Materiais Biocompatíveis , Dopamina , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/terapia
19.
Biomaterials ; 279: 121214, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736147

RESUMO

Injectable hydrogels have been employed extensively as versatile materials for cartilage regeneration due to their excellent biocompatibility, tunable structure, and ability to accommodate bioactive factors, as well as their ability to be locally delivered via minimally invasive injection to fill irregular defects. More recently, in vitro and in vivo studies have revealed that processing these materials to produce cell-laden microgels can enhance cell-cell and cell-matrix interactions and boost nutrient and metabolite exchange. Moreover, these studies have demonstrated gene expression profiles and matrix regeneration that are superior compared to conventional injectable bulk hydrogels. As cell-laden microgels and their application in cartilage repair are moving closer to clinical translation, this review aims to present an overview of the recent developments in this field. Here we focus on the currently used biomaterials and crosslinking strategies, the innovative fabrication techniques being used for the production of microgels, the cell sources used, the signals used for induction of chondrogenic differentiation and the resultant biological responses, and the ability to create three-dimensional, functional cartilage tissues. In addition, this review also covers the current clinical approaches for repairing cartilage as well as specific challenges faced when attempting the regeneration of damaged cartilage tissue. New findings related to the macroporous nature of the structures formed by the assembled microgel building blocks and the novel use of microgels in 3D printing for cartilage tissue engineering are also highlighted. Finally, we outline the challenges and future opportunities for employing cell-laden microgels in clinical applications.


Assuntos
Microgéis , Cartilagem , Condrogênese , Hidrogéis , Regeneração , Engenharia Tecidual
20.
Langmuir ; 26(17): 13987-94, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20698710

RESUMO

In this work we report a one-step method for the fabrication of poly(ethylene glycol) PEG-like chemical gradients, which were deposited via continuous wave radio frequency glow discharge plasma polymerization of diethylene glycol dimethyl ether (DG). A knife edge top electrode was used to produce the gradient coatings at plasma load powers of 5 and 30 W. The chemistry across the gradients was analyzed using a number of complementary techniques including spatially resolved synchrotron source grazing incidence FTIR microspectroscopy, X-ray photoelectron spectroscopy (XPS) and synchrotron source near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Gradients deposited at lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode of each gradient film. Surface derivatization experiments were employed to investigate the concentration of residual ether units in the films. In addition, surface derivatization was used to investigate the reactivity of the gradient films toward primary amine groups in a graft copolymer of poly (L-lysine) and poly(ethylene glycol) (PLL-g-PEG copolymer) which was correlated to residual aldehyde, ketone and carboxylic acid functionalities within the films. The protein adsorption characteristics of the gradients were analyzed using three proteins of varying size and charge. Protein adsorption varied and was dependent on the chemistry and the physical properties (such as size and charge) of the proteins. A correlation between the concentration of ether functionality and the protein fouling characteristics along the gradient films was observed. The gradient coating technique developed in this work allows for the efficient and high-throughput study of biomaterial gradient coating interactions.


Assuntos
Lisina/química , Polietilenoglicóis/química , Polilisina/química , Soroalbumina Bovina/análise , gama-Globulinas/análise , Animais , Bovinos , Membranas Artificiais , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA