Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Res ; 281: 127634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308902

RESUMO

Nutrient deficiency, natural enemies and litter autotoxicity have been proposed as possible mechanisms to explain species-specific negative plant-soil feedback (PSF). Another potential contributor to negative PSF is the plant released extracellular self-DNA during litter decay. In this study, we sought to comprehensively investigate these hypotheses by using Arabidopsis thaliana (L.) Heynh as a model plant in a feedback experiment. The experiment comprised a conditioning phase and a response phase in which the conditioned soils underwent four treatments: (i) addition of activated carbon, (ii) washing with tap water, (iii) sterilization by autoclaving, and (iv) control without any treatment. We evaluated soil chemical properties, microbiota by shotgun sequencing and the amount of A. thaliana extracellular DNA in the differently treated soils. Our results showed that washing and sterilization treatments mitigated the negative PSF effect. While shifts in soil chemical properties were not pronounced, significant changes in soil microbiota were observed, especially after sterilization. Notably, plant biomass was inversely associated with the content of plant self-DNA in the soil. Our results suggest that the negative PSF observed in the conditioned soil was associated to increased amounts of soilborne pathogens and plant self-DNA. However, fungal pathogens were not limited to negative conditions, butalso found in soils enhancing A.thaliana growth. In-depth multivariate analysis highlights that the hypothesis of negative PSF driven solely by pathogens lacks consistency. Instead, we propose a multifactorial explanation for the negative PSF buildup, in which the accumulation of self-DNA weakens the plant's root system, making it more susceptible to pathogens.


Assuntos
Arabidopsis , Microbiota , Retroalimentação , Arabidopsis/genética , Solo/química , Plantas/microbiologia , Microbiologia do Solo , DNA de Plantas
2.
Plants (Basel) ; 12(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986976

RESUMO

The accumulation of fragmented extracellular DNA reduces conspecific seed germination and plantlet growth in a concentration-dependent manner. This self-DNA inhibition was repeatedly reported, but the underlying mechanisms are not fully clarified. We investigated the species-specificity of self-DNA inhibition in cultivated vs. weed congeneric species (respectively, Setaria italica and S. pumila) and carried out a targeted real-time qPCR analysis under the hypothesis that self-DNA elicits molecular pathways that are responsive to abiotic stressors. The results of a cross-factorial experiment on root elongation of seedlings exposed to self-DNA, congeneric DNA, and heterospecific DNA from Brassica napus and Salmon salar confirmed a significantly higher inhibition by self-DNA as compared to non-self-treatments, with the latter showing a magnitude of the effect consistent with the phylogenetic distance between the DNA source and the target species. Targeted gene expression analysis highlighted an early activation of genes involved in ROS degradation and management (FSD2, ALDH22A1, CSD3, MPK17), as well as deactivation of scaffolding molecules acting as negative regulators of stress signaling pathways (WD40-155). While being the first exploration of early response to self-DNA inhibition at molecular level on C4 model plants, our study highlights the need for further investigation of the relationships between DNA exposure and stress signaling pathways by discussing potential applications for species-specific weed control in agriculture.

3.
Microb Cell ; 10(12): 292-295, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38053574

RESUMO

Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homologous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumulation of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromosomal circular DNA (eccDNA) already reported inside yeast cells. The recovered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells.

4.
Plants (Basel) ; 11(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893643

RESUMO

The stress gradient hypothesis (SGH) states that plant-plant interactions shift from competition to facilitation in increasing stress conditions. In salt marshes, edaphic properties can weaken the application of the SGH by amplifying the intensity of flooding and controlling plant zonation. We identified facilitative and competitive interactions along flooding gradients and tested the role of edaphic properties in exacerbating stress and shaping plant-plant interactions. Morphological traits of two target halophytes (Limonium narbonense and Sarcocornia fruticosa), flooding intensity, soil texture and soil organic C were recorded. The relative plant fitness index was assessed for the two species based on the relative growth in plurispecific rather than monospecific plant communities. Plant fitness increased with increasing stress supporting the SGH. L. narbonense showed larger fitness in plurispecific stands whereas S. fruticosa performed better in conspecific stands. Significant intra- or interspecific interactions were observed along the stress gradient defined by the combination of flooding and clay content in soil. When considering the limited soil organic C as stressor, soil properties were more important than flooding in defining plant-plant interactions. We highlight the need for future improvements of the SGH approach by including edaphic stressors in the model and their possible interactions with the main abiotic drivers of zonation.

5.
PLoS One ; 16(3): e0247842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705458

RESUMO

In last decades, a large body of evidence clarified nitrogen isotope composition (δ15N) patterns in plant leaves, roots and metabolites, showing isotopic fractionation along N uptake and assimilation pathways, in relation to N source and use efficiency, also suggesting 15N depletion in plant DNA. Here we present a manipulative experiment on Brassica napus var. oleracea, where we monitored δ 15N of purified, lyophilized DNA and source leaf and root materials, over a 60-days growth period starting at d 60 after germination, in plants initially supplied with a heavy labelled (δ 15NAir-N2 = 2100 mUr) ammonium nitrate solution covering nutrient requirements for the whole observation period (470 mg N per plant) and controlling for the labelled N species (NH4, NO3 and both). Dynamics of Isotopic Ratio Mass Spectrometry (IRMS) data for the three treatments showed that: (1) leaf and root δ 15N dynamics strictly depend on the labelled chemical species, with NH4, NO3 and NH4NO3 plants initially showing higher, lower and intermediate values, respectively, then converging due to the progressive NH4+ depletion from the nutrient solution; (2) in NH4NO3, where δ15N was not affected by the labelled chemical species, we did not observe isotopic fractionation associated to inorganic N uptake; (3) δ15N values in roots compared to leaves did not fully support patterns predicted by differences in assimilation rates of NH4+ and NO3-; (4) DNA is depleted in 15N compared to the total N pools of roots and leaves, likely due to enzymatic discrimination during purine biosynthesis. In conclusion, while our experimental setup did not allow to assess the fractionation coefficient (ε) associated to DNA bases biosynthesis, this is the first study specifically reporting on dynamics of specific plant molecular pools such as nucleic acids over a long observation period with a heavy labelling technique.


Assuntos
Brassica napus/metabolismo , DNA de Plantas/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
6.
Plants (Basel) ; 10(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451789

RESUMO

The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant-soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self- (conspecific) and nonself- (heterologous) DNA. The results highlight that cells distinguish self- from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular self- or nonself-DNA and are discussed in the context of Damage- and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA