Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cell Biol ; 15: 32, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25183317

RESUMO

BACKGROUND: The protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes. RESULTS: Two conserved domains were found in the p49/STRAP protein. The SRF-binding domain was at its N-terminus and was highly conserved among mammalian species, xenopus and zebrafish. A BUD22 domain was found at its C-terminus in three sequence databases. The BUD22 domain was conserved among mammalian p49/STRAP proteins, and yeast cellular morphogenesis proteins, which is involved in ribosome biogenesis that affects growth rate and cell size. The endogenous p49/SRAP protein was localized mainly in the nucleus but also widely distributed in the cytoplasm, and was in close proximity to the actin. Transfected GFP-p49/STRAP protein co-localized with nucleolin within the nucleolus. Overexpression of p49/STRAP reduced actin content in cultured cells and resulted in smaller cell size versus control cells. Increased expression of p49/STRAP in transgenic mice resulted in newborns with malformations, which included asymmetric abdominal and thoracic cavities, and substantial changes in cardiac morphology. p49/STRAP altered the expression of certain muscle-specific genes, including that of the SRF gene, which is a key regulator of cardiac genes at the developmental, structural and maintenance level and has two SRE binding sites. CONCLUSIONS: Since p49/STRAP is a co-factor of SRF, our data suggest that p49/STRAP likely regulates cell size and morphology through SRF target genes. The function of its BUD22 domain warrants further investigation. The observed increase in p49/STRAP expression during cellular aging may contribute to observed morphological changes in senescence.


Assuntos
Camundongos/anatomia & histologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Tamanho Celular , Regulação da Expressão Gênica , Camundongos/embriologia , Camundongos/genética , Camundongos Transgênicos , Estrutura Terciária de Proteína , Fator de Resposta Sérica/genética , Fatores de Transcrição/análise , Regulação para Cima
2.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189720

RESUMO

Most cancer deaths arise from metastases as a result of circulating tumor cells (CTCs) spreading from the primary tumor to vital organs. Despite progress in cancer prognosis, the role of CTCs in early disease diagnosis is unclear because of the low sensitivity of CTC assays. We demonstrate the high sensitivity of the Cytophone technology using an in vivo photoacoustic flow cytometry platform with a high pulse rate laser and focused ultrasound transducers for label-free detection of melanin-bearing CTCs in patients with melanoma. The transcutaneous delivery of laser pulses via intact skin to a blood vessel results in the generation of acoustic waves from CTCs, which are amplified by vapor nanobubbles around intrinsic melanin nanoclusters. The time-resolved detection of acoustic waves using fast signal processing algorithms makes photoacoustic data tolerant to skin pigmentation and motion. No CTC-associated signals within established thresholds were identified in 19 healthy volunteers, but 27 of 28 patients with melanoma displayed signals consistent with single, clustered, and likely rolling CTCs. The detection limit ranged down to 1 CTC/liter of blood, which is ~1000 times better than in preexisting assays. The Cytophone could detect individual CTCs at a concentration of ≥1 CTC/ml in 20 s and could also identify clots and CTC-clot emboli. The in vivo results were verified with six ex vivo methods. These data suggest the potential of in vivo blood testing with the Cytophone for early melanoma screening, assessment of disease recurrence, and monitoring of the physical destruction of CTCs through real-time CTC counting.


Assuntos
Biópsia Líquida/métodos , Melanoma/patologia , Citometria de Fluxo , Humanos , Melanoma/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia
3.
J Biophotonics ; 7(7): 465-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23450780

RESUMO

In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments.


Assuntos
Aedes/fisiologia , Aedes/efeitos da radiação , Ouro/efeitos da radiação , Lasers , Nanopartículas Metálicas/efeitos da radiação , Controle de Mosquitos/métodos , Técnicas Fotoacústicas/métodos , Animais , Relação Dose-Resposta à Radiação , Temperatura Alta , Doses de Radiação , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA