Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2152-2162, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827234

RESUMO

Background and objective: Systemic autoinflammatory diseases (SAIDs) are characterized by widespread inflammation, but for most of them there is a lack of specific biomarkers for accurate diagnosis. Although a number of machine learning algorithms have been used to analyze SAID datasets, aiding in the discovery of novel biomarkers, there is a growing recognition of the importance of SAID timeseries clustering, as it can capture the temporal dynamics of gene expression patterns. Methodology: This paper proposes a novel clustering methodology to efficiently associate three-dimensional data. The algorithm utilizes competitive learning to create a self-organizing neural network and adjust neuron positions in time-dependent and high dimensional feature space in order to assign them as clustering centers. The quantitative evaluation of the clustering was based on well-known clustering indices. Furthermore, a differential expression analysis and classification pipeline was employed to assess the capability of the proposed methodology to extract more accurate pathway-specific genes from its clusters. For that, a comparative analysis was also conducted against a heuristic timeseries clustering method. Results: The proposed methodology achieved better overall clustering indices scores and classification metrics using genes derived from its clusters. Notable cases include a threefold increase in the Calinski-Harabasz clustering index, a twofold improvement in the Davies-Bouldin clustering index and a ∼60% increase in the classification specificity score. Conclusion: A novel clustering methodology was developed and applied on several gene expression timeseries datasets from systemic autoinflammatory diseases, and its ability to efficiently produce well separated clusters compared to existing heuristic methods was demonstrated.

2.
Med Biol Eng Comput ; 62(4): 973-996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110832

RESUMO

Telehealth demand is rapidly growing along with the necessity of providing wide-scale services covering multiple patients at the same time. In this work, the development of a store-and-forward (SAF) teledermoscopy system was considered. The dermoFeatures profile (DP) was proposed to decrease the size of the original dermoscopy image using its most significant features in the form of a newly generated diagonal alignment to generate a small-sized image DP, which is based on the extraction of a weighted intensity-difference frequency (WIDF) features along with morphological features (MOFs). These DPs were assembled to establish a Diagnostic Multiple-patient DermoFeature Profile (DMpDP). Different arrangements are proposed, namely the horizontally aligned, the diagonal-based, and the sequential-based DMpDPs to support the SAF systems. The DMpDPs are then embedded in a recorded patient-information signal (RPS) using a weight factor ß to boost the transmitted patient-information signal. The effect of the different transform domains, ß values, and number of DPs within the DMpDP were investigated in terms of the diagnostic classification accuracy at the receiver based on the extracted DPs, along with the recorded signal quality evaluation metrics of the recovered RPS. The sequential-based DMpDP achieved the highest classification accuracy, under - 5 dB additive white Gaussian noise, with a realized signal-to-noise ratio of 98.79% during the transmission of 248 DPs using ß = 100, and spectral subtraction filtering.


Assuntos
Dermoscopia , Telemedicina , Humanos , Dermoscopia/métodos , Telemedicina/métodos , Razão Sinal-Ruído
3.
Patterns (N Y) ; 5(1): 100893, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38264722

RESUMO

Although several studies have deployed gradient boosting trees (GBT) as a robust classifier for federated learning tasks (federated GBT [FGBT]), even with dropout rates (federated gradient boosting trees with dropout rate [FDART]), none of them have investigated the overfitting effects of FGBT across heterogeneous and highly imbalanced datasets within federated environments nor the effect of dropouts in the loss function. In this work, we present the federated hybrid boosted forests (FHBF) algorithm, which incorporates a hybrid weight update approach to overcome ill-posed problems that arise from overfitting effects during the training across highly imbalanced datasets in the cloud. Eight case studies were conducted to stress the performance of FHBF against existing algorithms toward the development of robust AI models for lymphoma development across 18 European federated databases. Our results highlight the robustness of FHBF, yielding an average loss of 0.527 compared with FGBT (0.611) and FDART (0.584) with increased classification performance (0.938 sensitivity, 0.732 specificity).

4.
Front Pain Res (Lausanne) ; 5: 1372814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601923

RESUMO

Accurate and objective pain evaluation is crucial in developing effective pain management protocols, aiming to alleviate distress and prevent patients from experiencing decreased functionality. A multimodal automatic assessment framework for acute pain utilizing video and heart rate signals is introduced in this study. The proposed framework comprises four pivotal modules: the Spatial Module, responsible for extracting embeddings from videos; the Heart Rate Encoder, tasked with mapping heart rate signals into a higher dimensional space; the AugmNet, designed to create learning-based augmentations in the latent space; and the Temporal Module, which utilizes the extracted video and heart rate embeddings for the final assessment. The Spatial-Module undergoes pre-training on a two-stage strategy: first, with a face recognition objective learning universal facial features, and second, with an emotion recognition objective in a multitask learning approach, enabling the extraction of high-quality embeddings for the automatic pain assessment. Experiments with the facial videos and heart rate extracted from electrocardiograms of the BioVid database, along with a direct comparison to 29 studies, demonstrate state-of-the-art performances in unimodal and multimodal settings, maintaining high efficiency. Within the multimodal context, 82.74% and 39.77% accuracy were achieved for the binary and multi-level pain classification task, respectively, utilizing 9.62 million parameters for the entire framework.

5.
J Alzheimers Dis ; 99(3): 941-952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759007

RESUMO

Background: Unhealthy behavior increases the risk of dementia. Various socio-cognitive determinants influence whether individuals persist in or alter these unhealthy behaviors. Objective: This study identifies relevant determinants of behavior associated to dementia risk. Methods: 4,104 Dutch individuals (40-79 years) completed a screening questionnaire exploring lifestyle behaviors associated with dementia risk. Subsequently, 3,065 respondents who engaged in one or more unhealthy behaviors completed a follow-up questionnaire investigating socio-cognitive determinants of these behaviors. Cross-tables were used to assess the accuracy of participants' perceptions regarding their behavior compared to recommendations. Confidence Interval-Based Estimation of Relevance (CIBER) was used to identify the most relevant determinants of behavior based on visual inspection and interpretation. Results: Among the respondents, 91.3% reported at least one, while 65% reported two or more unhealthy lifestyle behaviors associated to dementia risk. Many of them were not aware they did not adhere to lifestyle recommendations. The most relevant determinants identified include attitudes (i.e., lacking a passion for cooking and finding pleasure in drinking alcohol or smoking), misperceptions on social comparisons (i.e., overestimating healthy diet intake and underestimating alcohol intake), and low perceived behavioral control (i.e., regarding changing physical inactivity, altering diet patterns, and smoking cessation). Conclusions: Individual-level interventions that encourage lifestyle change should focus on enhancing accurate perceptions of behaviors compared to recommendations, while strengthening perceived control towards behavior change. Given the high prevalence of dementia risk factors, combining interventions at both individual and environmental levels are likely to be the most effective strategy to reduce dementia on a population scale.


Assuntos
Demência , Estilo de Vida , Comportamento de Redução do Risco , Humanos , Demência/epidemiologia , Demência/prevenção & controle , Demência/psicologia , Países Baixos/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Inquéritos e Questionários , Comportamentos Relacionados com a Saúde , Cognição , Consumo de Bebidas Alcoólicas/psicologia , Consumo de Bebidas Alcoólicas/epidemiologia
6.
J Imaging ; 10(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786569

RESUMO

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

7.
Comput Struct Biotechnol J ; 23: 2892-2910, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39108677

RESUMO

Synthetic data generation has emerged as a promising solution to overcome the challenges which are posed by data scarcity and privacy concerns, as well as, to address the need for training artificial intelligence (AI) algorithms on unbiased data with sufficient sample size and statistical power. Our review explores the application and efficacy of synthetic data methods in healthcare considering the diversity of medical data. To this end, we systematically searched the PubMed and Scopus databases with a great focus on tabular, imaging, radiomics, time-series, and omics data. Studies involving multi-modal synthetic data generation were also explored. The type of method used for the synthetic data generation process was identified in each study and was categorized into statistical, probabilistic, machine learning, and deep learning. Emphasis was given to the programming languages used for the implementation of each method. Our evaluation revealed that the majority of the studies utilize synthetic data generators to: (i) reduce the cost and time required for clinical trials for rare diseases and conditions, (ii) enhance the predictive power of AI models in personalized medicine, (iii) ensure the delivery of fair treatment recommendations across diverse patient populations, and (iv) enable researchers to access high-quality, representative multimodal datasets without exposing sensitive patient information, among others. We underline the wide use of deep learning based synthetic data generators in 72.6 % of the included studies, with 75.3 % of the generators being implemented in Python. A thorough documentation of open-source repositories is finally provided to accelerate research in the field.

8.
Patterns (N Y) ; 5(7): 100992, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39081575

RESUMO

Prostate cancer diagnosis and treatment relies on precise MRI lesion segmentation, a challenge notably for small (<15 mm) and intermediate (15-30 mm) lesions. Our study introduces ProLesA-Net, a multi-channel 3D deep-learning architecture with multi-scale squeeze and excitation and attention gate mechanisms. Tested against six models across two datasets, ProLesA-Net significantly outperformed in key metrics: Dice score increased by 2.2%, and Hausdorff distance and average surface distance improved by 0.5 mm, with recall and precision also undergoing enhancements. Specifically, for lesions under 15 mm, our model showed a notable increase in five key metrics. In summary, ProLesA-Net consistently ranked at the top, demonstrating enhanced performance and stability. This advancement addresses crucial challenges in prostate lesion segmentation, enhancing clinical decision making and expediting treatment processes.

9.
J Clin Med ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673515

RESUMO

The fractional flow reserve (FFR) is well recognized as a gold standard measure for the estimation of functional coronary stenosis. Technological progressions in image processing have empowered the reconstruction of three-dimensional models of the coronary arteries via both non-invasive and invasive imaging modalities. The application of computational fluid dynamics (CFD) techniques to coronary 3D anatomical models allows the virtual evaluation of the hemodynamic significance of a coronary lesion with high diagnostic accuracy. METHODS: Search of the bibliographic database for articles published from 2011 to 2023 using the following search terms: invasive FFR and non-invasive FFR. Pooled analysis of the sensitivity and specificity, with the corresponding confidence intervals from 32% to 94%. In addition, the summary processing times were determined. RESULTS: In total, 24 studies published between 2011 and 2023 were included, with a total of 13,591 patients and 3345 vessels. The diagnostic accuracy of the invasive and non-invasive techniques at the per-patient level was 89% (95% CI, 85-92%) and 76% (95% CI, 61-80%), respectively, while on the per-vessel basis, it was 92% (95% CI, 82-88%) and 81% (95% CI, 75-87%), respectively. CONCLUSION: These opportunities providing hemodynamic information based on anatomy have given rise to a new era of functional angiography and coronary imaging. However, further validations are needed to overcome several scientific and computational challenges before these methods are applied in everyday clinical practice.

10.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397863

RESUMO

A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of their mechanical characteristics and responses in fluidic environments. A novel scaffold geometry was designed, considering the requirements of cellular proliferation and mechanical properties. Specimens with the same dimensions and porosity of 45% were studied to fully describe and understand the yielding behavior. Mechanical testing indicated higher apparent moduli in the PLA-based scaffolds, while compressive strength decreased with CS/MWCNTs reinforcement due to nanoscale challenges in 3D printing. Mechanical modeling revealed lower stresses in the PLA scaffolds, attributed to the molecular mass of the filler. Despite modeling challenges, adjustments improved simulation accuracy, aligning well with experimental values. Material and reinforcement choices significantly influenced responses to mechanical loads, emphasizing optimal structural robustness. Computational fluid dynamics emphasized the significance of scaffold permeability and wall shear stress in influencing bone tissue growth. For an inlet velocity of 0.1 mm/s, the permeability value was estimated at 4.41 × 10-9 m2, which is in the acceptable range close to human natural bone permeability. The average wall shear stress (WSS) value that indicates the mechanical stimuli produced by cells was calculated to be 2.48 mPa, which is within the range of the reported literature values for promoting a higher proliferation rate and improving osteogenic differentiation. Overall, a holistic approach was utilized to achieve a delicate balance between structural robustness and optimal fluidic conditions, in order to enhance the overall performance of scaffolds in tissue engineering applications.

11.
Sci Rep ; 14(1): 10598, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719940

RESUMO

A popular and widely suggested measure for assessing unilateral hand motor skills in stroke patients is the box and block test (BBT). Our study aimed to create an augmented reality enhanced version of the BBT (AR-BBT) and evaluate its correlation to the original BBT for stroke patients. Following G-power analysis, clinical examination, and inclusion-exclusion criteria, 31 stroke patients were included in this study. AR-BBT was developed using the Open Source Computer Vision Library (OpenCV). The MediaPipe's hand tracking library uses a palm and a hand landmark machine learning model to detect and track hands. A computer and a depth camera were employed in the clinical evaluation of AR-BBT following the principles of traditional BBT. A strong correlation was achieved between the number of blocks moved in the BBT and the AR-BBT on the hemiplegic side (Pearson correlation = 0.918) and a positive statistically significant correlation (p = 0.000008). The conventional BBT is currently the preferred assessment method. However, our approach offers an advantage, as it suggests that an AR-BBT solution could remotely monitor the assessment of a home-based rehabilitation program and provide additional hand kinematic information for hand dexterities in AR environment conditions. Furthermore, it employs minimal hardware equipment.


Assuntos
Realidade Aumentada , Mãos , Aprendizado de Máquina , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Idoso , Mãos/fisiopatologia , Mãos/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Destreza Motora/fisiologia , Adulto
12.
Insights Imaging ; 15(1): 130, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816658

RESUMO

Artificial intelligence (AI) is revolutionizing the field of medical imaging, holding the potential to shift medicine from a reactive "sick-care" approach to a proactive focus on healthcare and prevention. The successful development of AI in this domain relies on access to large, comprehensive, and standardized real-world datasets that accurately represent diverse populations and diseases. However, images and data are sensitive, and as such, before using them in any way the data needs to be modified to protect the privacy of the patients. This paper explores the approaches in the domain of five EU projects working on the creation of ethically compliant and GDPR-regulated European medical imaging platforms, focused on cancer-related data. It presents the individual approaches to the de-identification of imaging data, and describes the problems and the solutions adopted in each case. Further, lessons learned are provided, enabling future projects to optimally handle the problem of data de-identification. CRITICAL RELEVANCE STATEMENT: This paper presents key approaches from five flagship EU projects for the de-identification of imaging and clinical data offering valuable insights and guidelines in the domain. KEY POINTS: ΑΙ models for health imaging require access to large amounts of data. Access to large imaging datasets requires an appropriate de-identification process. This paper provides de-identification guidelines from the AI for health imaging (AI4HI) projects.

13.
Diagnostics (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38201376

RESUMO

Several studies have demonstrated a critical association between cardiovascular disease (CVD) and mental health, revealing that approximately one-third of individuals with CVD also experience depression. This comorbidity significantly increases the risk of cardiac complications and mortality, a risk that persists regardless of traditional factors. Addressing this issue, our study pioneers a straightforward, explainable, and data-driven pipeline for predicting depression in CVD patients. METHODS: Our study was conducted at a cardiac surgical intensive care unit. A total of 224 participants who were scheduled for elective coronary artery bypass graft surgery (CABG) were enrolled in the study. Prior to surgery, each patient underwent psychiatric evaluation to identify major depressive disorder (MDD) based on the DSM-5 criteria. An advanced data curation workflow was applied to eliminate outliers and inconsistencies and improve data quality. An explainable AI-empowered pipeline was developed, where sophisticated machine learning techniques, including the AdaBoost, random forest, and XGBoost algorithms, were trained and tested on the curated data based on a stratified cross-validation approach. RESULTS: Our findings identified a significant correlation between the biomarker "sRAGE" and depression (r = 0.32, p = 0.038). Among the applied models, the random forest classifier demonstrated superior accuracy in predicting depression, with notable scores in accuracy (0.62), sensitivity (0.71), specificity (0.53), and area under the curve (0.67). CONCLUSIONS: This study provides compelling evidence that depression in CVD patients, particularly those with elevated "sRAGE" levels, can be predicted with a 62% accuracy rate. Our AI-driven approach offers a promising way for early identification and intervention, potentially revolutionizing care strategies in this vulnerable population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA