Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 41(11): 1081-1090, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31965597

RESUMO

The simulation of X-ray emission spectra of organic molecules using time-dependent density functional theory (TDDFT) is explored. TDDFT calculations using standard hybrid exchange-correlation functionals in conjunction with large basis sets can predict accurate X-ray emission spectra provided an energy shift is applied to align the spectra with experiment. The relaxation of the orbitals in the intermediate state is an important factor, and neglect of this relaxation leads to considerably poorer predicted spectra. A short-range corrected functional is found to give emission energies that required a relatively small energy shift to align with experiment. However, increasing the amount of Hartree-Fock exchange in this functional to remove the need for any energy shift led to a deterioration in the quality of the calculated spectral profile. To predict accurate spectra without reference to experimental measurements, we use the CAM-B3LYP functional with the energy scale determined with reference to a Δself-consistent field calculation for the highest energy emission transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA