Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 9(1): e1003211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349635

RESUMO

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Assuntos
Estudo de Associação Genômica Ampla , Cavalos/genética , Miostatina/genética , Seleção Genética , Animais , Evolução Biológica , Cruzamento , Genótipo , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
BMC Genomics ; 15: 147, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24559379

RESUMO

BACKGROUND: Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. RESULTS: Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb - 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p < 0.05) in a genome-wide association study (GWAS). Two of the SNPs on ECA 18 were located in a haplotype block containing the gene zinc finger protein 804A (ZNF804A). One haplotype within this block has a protective effect (controls at 1.95 times less risk of fracture than cases, p = 1 × 10(-4)), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). CONCLUSIONS: Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses.


Assuntos
Fraturas Ósseas/genética , Variação Genética , Estudo de Associação Genômica Ampla , Cavalos/genética , Animais , Cromossomos de Mamíferos , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Risco
3.
PLoS Genet ; 7(7): e1002133, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21750681

RESUMO

The Fell and Dales are rare native UK pony breeds at risk due to falling numbers, in-breeding, and inherited disease. Specifically, the lethal Mendelian recessive disease Foal Immunodeficiency Syndrome (FIS), which manifests as B-lymphocyte immunodeficiency and progressive anemia, is a substantial threat. A significant percentage (∼10%) of the Fell ponies born each year dies from FIS, compromising the long-term survival of this breed. Moreover, the likely spread of FIS into other breeds is of major concern. Indeed, FIS was identified in the Dales pony, a related breed, during the course of this work. Using a stepwise approach comprising linkage and homozygosity mapping followed by haplotype analysis, we mapped the mutation using 14 FIS-affected, 17 obligate carriers, and 10 adults of unknown carrier status to a ∼1 Mb region (29.8 - 30.8 Mb) on chromosome (ECA) 26. A subsequent genome-wide association study identified two SNPs on ECA26 that showed genome-wide significance after Bonferroni correction for multiple testing: BIEC2-692674 at 29.804 Mb and BIEC2-693138 at 32.19 Mb. The associated region spanned 2.6 Mb from ∼29.6 Mb to 32.2 Mb on ECA26. Re-sequencing of this region identified a mutation in the sodium/myo-inositol cotransporter gene (SLC5A3); this causes a P446L substitution in the protein. This gene plays a crucial role in the regulatory response to osmotic stress that is essential in many tissues including lymphoid tissues and during early embryonic development. We propose that the amino acid substitution we identify here alters the function of SLC5A3, leading to erythropoiesis failure and compromise of the immune system. FIS is of significant biological interest as it is unique and is caused by a gene not previously associated with a mammalian disease. Having identified the associated gene, we are now able to eradicate FIS from equine populations by informed selective breeding.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cavalos/genética , Síndromes de Imunodeficiência/genética , Mutação/genética , Simportadores/genética , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Mapeamento Cromossômico , Cromossomos/imunologia , Predisposição Genética para Doença , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos , Simportadores/imunologia
4.
Mamm Genome ; 23(3-4): 294-303, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22052004

RESUMO

Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other livestock species, companion animal species, and humans. The principal aim of this study was to identify quantitative trait loci (QTL) associated with osteochondritis dissecans (OCD) in the Thoroughbred using a genome-wide association study. A secondary objective was to test the effect of previously identified QTL in the current population. Over 300 horses, classified as cases or controls according to clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip. An animal model was first implemented in order to adjust each horse's phenotypic status for average relatedness among horses and other potentially confounding factors which were present in the data. The genome-wide association test was then conducted on the residuals from the animal model. A single SNP on chromosome 3 was found to be associated with OCD at a genome-wide level of significance, as determined by permutation. According to the current sequence annotation, the SNP is located in an intergenic region of the genome. The effects of 24 SNPs, representing QTL previously identified in a sample of Hanoverian Warmblood horses, were tested directly in the animal model. When fitted alongside the significant SNP on ECA3, two of these SNPs were found to be associated with OCD. Confirmation of the putative QTL identified on ECA3 requires validation in an independent sample. The results of this study suggest that a significant challenge faced by equine researchers is the generation of sufficiently large data sets to effectively study complex diseases such as osteochondrosis.


Assuntos
Estudo de Associação Genômica Ampla/veterinária , Doenças dos Cavalos/genética , Osteocondrite Dissecante/veterinária , Animais , Feminino , Cavalos , Masculino , Osteocondrite Dissecante/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
PLoS One ; 8(1): e54997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383025

RESUMO

Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.


Assuntos
Genômica , Cavalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Análise por Conglomerados , Cavalos/classificação , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA