Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2318386121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39264743

RESUMO

Capillarity-driven transport in nanoporous solids is widespread in nature and crucial for modern liquid-infused engineering materials. During imbibition, curved menisci driven by high negative Laplace pressures exert an enormous contractile load on the porous matrix. Due to the challenge of simultaneously monitoring imbibition and deformation with high spatial resolution, the resulting coupling of solid elasticity to liquid capillarity has remained largely unexplored. Here, we study water imbibition in mesoporous silica using optical imaging, gravimetry, and high-resolution dilatometry. In contrast to an expected Laplace pressure-induced contraction, we find a square-root-of-time expansion and an additional abrupt length increase when the menisci reach the top surface. The final expansion is absent when we stop the imbibition front inside the porous medium in a dynamic imbibition-evaporation equilibrium, as is typical for transpiration-driven hydraulic transport in plants, especially in trees. These peculiar deformation behaviors are validated by single-nanopore molecular dynamics simulations and described by a continuum model that highlights the importance of expansive surface stresses at the pore walls (Bangham effect) and the buildup or release of contractile Laplace pressures as menisci collectively advance, arrest, or disappear. Our model suggests that these observations apply to any imbibition process in nanopores, regardless of the liquid/solid combination, and that the Laplace contribution upon imbibition is precisely half that of vapor sorption, due to the linear pressure drop associated with viscous flow. Thus, simple deformation measurements can be used to quantify surface stresses and Laplace pressures or transport in a wide variety of natural and artificial porous media.

2.
Acc Chem Res ; 56(17): 2278-2285, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607332

RESUMO

ConspectusThe ligand shells of colloidal nanoparticles (NPs) can serve different purposes. In general, they provide colloidal stability by introducing steric repulsion between NPs. In the context of biological applications, the ligand shell plays a critical role in targeting, enabling NPs to achieve specific biodistributions. However, there is also another important feature of the ligand shell of NPs, namely, the creation of a local environment differing from the bulk of the solvent in which the NPs are dispersed. It is known that charged ligand shells can attract or repel ions and change the effective charge of a NP through Debye-Hückel screening. Positively charged ions, such as H+ (or H3O+) are attracted to negatively charged surfaces, whereas negatively charged ions, such as Cl- are repelled. The distribution of the ions around charged NP surfaces is a radial function of distance from the center of the NP, which is governed by a balance of electrostatic forces and entropy of ions and ligands. As a result, the ion concentration at the NP surface is different from its bulk equilibrium concentration, i.e., the charged ligand shell around the NPs has formed a distinct local environment. This not only applies to charged ligand shells but also follows a more general principle of induced condensation and depletion. Polar/apolar ligand shells, for example, result in a locally increased concentration of polar/apolar molecules. Similar effects can be seen for biocatalysts like enzymes immobilized in nanoporous host structures, which provide a special environment due to their surface chemistry and geometrical nanoconfinement. The formation of a local environment close to the ligand shell of NPs has profound implications for NP sensing applications. As a result, analyte concentrations close to the ligand shell, which are the ones that are measured, may be very different from the analyte concentrations in bulk. Based on previous work describing this effect, it will be discussed herein how such local environments, created by the choice of used ligands, may allow for tailoring the NPs' sensing properties. In general, the ligand shell around NPs can be attractive/repulsive for molecules with distinct properties and thus forms an environment that can modulate the specific response. Such local environments can also be optimized to modulate chemical reactions close to the NP surface (for example, by size filtering within pores) or to attract specific low abundance proteins. The importance hereby is that this is based on interaction with low selectivity between the ligands and the target molecules.

3.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39017429

RESUMO

We investigated the structure of ice under nanoporous confinement in periodic mesoporous organosilicas (PMOs) with different organic functionalities and pore diameters between 3.4 and 4.9 nm. X-ray scattering measurements of the system were performed at temperatures between 290 and 150 K. We report the emergence of ice I with both hexagonal and cubic characteristics in different porous materials, as well as an alteration of the lattice parameters when compared to bulk ice. This effect is dependent on the pore diameter and the surface chemistry of the respective PMO. Investigations regarding the orientation of hexagonal ice crystals relative to the pore wall using x-ray cross correlation analysis reveal one or more discrete preferred orientation in most of the samples. For a pore diameter of around 3.8 nm, stronger correlation peaks are present in more hydrophilically functionalized pores and seem to be connected to stronger shifts in the lattice parameters.

4.
Inorg Chem ; 60(17): 13000-13010, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34415750

RESUMO

The infiltration of palladium and platinum nanoparticles (NPs) into the mesoporous metal-organic framework (MOF) CYCU-3 through chemical vapor infiltration (CVI) and incipient wetness infiltration (IWI) processes was systematically explored as a means to design novel NP@MOF composite materials for potential hydrogen storage applications. We employed a traditional CVI process and a new ″green″ IWI process using methanol for precursor infiltration and reduction under mild conditions. Transmission electron microscopy-based direct imaging techniques combined with synchrotron-based powder diffraction (SPD), energy-dispersive X-ray spectroscopy, and physisorption analysis reveal that the resulting NP@MOF composites combine key NP and MOF properties. Room temperature hydrogen adsorption capacities of 0.95 and 0.20 mmol/g at 1 bar and 2.9 and 1.8 mmol/g at 100 bar are found for CVI and IWI samples, respectively. Hydrogen spillover and/or physisorption are proposed as the dominating adsorption mechanisms depending on the NP infiltration method. Mechanistic insights were obtained through the crystallographic means using SPD-based difference envelope density analysis, providing previously underexplored details on NP@MOF preparations. Consequently, important host-guest correlations influencing the global hydrogen adsorption properties are discussed, and they demonstrate that employing MOFs as platforms for NPs is an alternative approach to the development of versatile materials for improving current hydrogen storage technologies.

5.
J Chem Phys ; 154(9): 094505, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685146

RESUMO

We have investigated the dynamics of liquid water confined in mesostructured porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5 nm-4.1 nm, was assessed from the comparative study of three PMOs comprising different organic bridging units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers providing complementary energy resolutions. Liquid water was studied at regularly spaced temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be described consistently by the combination of two independent motions resulting from fast local motion around the average molecule position and the confined translational jump diffusion of its center of mass. All the molecules performed local relaxations, whereas the translational motion of a fraction of molecules was frozen on the experimental timescale. This study provides a comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, residence time, confining radius, local relaxation time, and their temperature dependence. Importantly, it demonstrates that the strength of the water/surface interaction determines the long-time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, while the water dynamics in the pore center is barely affected by the interface hydrophilicity.

6.
Angew Chem Int Ed Engl ; 60(16): 8683-8688, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491265

RESUMO

Quantum computing and quantum information processing (QC/QIP) crucially depend on the availability of suitable quantum bits (qubits) and methods of their manipulation. Most qubit candidates known to date are not applicable at ambient conditions. Herein, we propose radical-grafted mesoporous silica as a versatile and prospective nanoplatform for spin-based QC/QIP. Extremely stable Blatter-type organic radicals are used, whose electron spin decoherence time is profoundly long even at room temperature (up to Tm ≈2.3 µs), thus allowing efficient spin manipulation by microwave pulses. The mesoporous structure of such composites is nuclear-spin free and provides additional opportunities of embedding guest molecules into the channels. Robustness and tunability of these materials promotes them as highly promising nanoplatforms for future QC/QIP developments.

7.
Chemistry ; 26(49): 11220-11230, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32196769

RESUMO

Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)-bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two-dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar-templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double-layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.

8.
Inorg Chem ; 58(13): 8471-8479, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184867

RESUMO

Nanosized structural defects in metal-organic frameworks (MOFs) attract growing attention and often remarkably enhance functional properties of these materials for various applications. In this work, a series of MOFs [Cu2(TPTA)1- x(BDPBTR) x] (H4TPTA, [1,1':3',1″-terphenyl]-3,3'',5,5''-tetracarboxylic acid; H4BDPBTR, 1,3-bis(3,5-dicarboxyphenyl)-1,2,4-benzotriazin-4-yl radical)) with a new stable radical linker doped into the structure has been synthesized and investigated using Electron Paramagnetic Resonance (EPR). Mixed linkers H4TPTA and H4BDPBTR were used to bridge copper(II) paddle-wheel units into a porous framework, where H4BDPBTR is the close structural analogue of H4TPTA. MOFs with various x = 0-0.4 were investigated. EPR studies indicated that the radical linker binds to the copper(II) units differently compared to diamagnetic linker, resulting in the formation of nanosized structural defects. Moreover, remarkable kinetic phenomena were observed upon cooling of this MOF, where slow structural rearrangements and concomitant changes of magnetic interactions were induced. Thus, our findings demonstrate that doping of structurally mimicking radical linkers into MOFs represents an efficient approach for designing target nanosized defects and introducing new magnetostructural functionalities for a variety of applications.

9.
Phys Chem Chem Phys ; 21(6): 3122-3133, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30675602

RESUMO

The electric double layer formation of supercapacitors is governed by ion electrosorption at the electrode surface. Large surface areas are beneficial for the energy storage process, typically achieved by carbon electrode materials. It is a matter of debate whether pores provide the same contribution to the capacitance regardless of the size, or if subnanometer pores lead to an anomalous increase of capacitance. In our work, we developed a new model for normalized capacitance depending on pore sizes, using a combination of a sandwich type capacitor for micropores and double-cylinder capacitor model for larger pores. Modification factors for each capacitance value were calculated using the nonlinear generalized reduced gradient method to obtain a modified electric sandwich double-cylinder capacitor (ESDCC) model. The model was validated by comparing the measured capacitance values of a set of prepared activated carbons in organic electrolytes with simulated values according to the modified ESDCC model, using combined physisorption data of carbon dioxide and nitrogen. We concluded a non-constant capacitive contribution, with pores having the size of bare cations contributing to the capacitance to a larger extent and mesopores with the size of three solvated ions providing an unusual low contribution to the overall capacitance.

10.
J Am Chem Soc ; 140(16): 5330-5333, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29617560

RESUMO

The synthesis of 3D covalent organic frameworks (COFs) adopting novel topologies is challenging, and so far 3D COFs have only been reported for nets based on building blocks with tetrahedral geometry. We demonstrate the targeted synthesis of an anionic 3D COF crystallizing in a three-coordinated srs net by exploiting a recently developed linkage for the formation of anionic silicate COFs based on hypercoordinate silicon nodes. The framework, named SiCOF-5, was synthesized by reticulating dianionic hexacoordinate [SiO6]2- nodes with triangular triphenylene building blocks and adopts a two-fold interpenetrated srs-c net with an overall composition of Na2[Si(C18H6O6)] (where C18H6O6 is triphenylene-2,3,6,7,10,11-hexakis(olate)). A key requirement for the crystallization of SiCOF-5 was the careful control over the nucleation and growth rate by gradual generation of the silicon source during the course of the reaction.

11.
Angew Chem Int Ed Engl ; 57(51): 16683-16687, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30334321

RESUMO

We demonstrate the synthesis of the first anionic aluminum metal-organic framework (MOFs) constructed from tetrahedral AlO4 sites. Al-Td-MOF-1 was obtained in a simple two-step synthesis by condensation of 1,4-dihydroxybenzene and lithium aluminum hydride into an amorphous aluminate framework before applying a solvothermal treatment under basic conditions to obtain the crystalline Al-Td-MOF-1 with a chemical composition of Li[Al(C6 H4 O2 )2 ]. The overall Al-Td-MOF-1 structure consists of one-dimensional chains of alternating edge-sharing AlO4 and LiO4 tetrahedral sites describing unidirectional pore channels with a square window aperture of ≈5×5 Å2 , best described topologically as a uninodal 6-coordinated snp rod net. Al-Td-MOF-1 features the highest Li+ loading reported to date for a MOF (2.50 wt %) and proved to be an effective single-ion solid electrolyte. An ionic conductivity of 5.7×10-5  S cm-1 was measured for Al-Td-MOF-1 and the beneficial contribution of crystallinity was evidenced by an 8-fold increase in conductivity between the disordered and crystalline material.

12.
Angew Chem Int Ed Engl ; 56(40): 12348-12351, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28715619

RESUMO

The properties of materials confined in porous media are important in scientific and technological aspects. Topology, size, and surface polarity of the pores play a critical role in the confinement effects, however, knowledge regarding the guest-pore interface structure is still lacking. Herein, we show that the molecular mobility of water confined in periodic mesoporous organosilicas (PMOs) is influenced by the polarity of the organic moiety. Multidimensional solid-state NMR spectroscopy directly probes the spatial arrangement of water inside the pores, showing that water interacts either with only the silicate layer or with both silicate and organic layers depending on the alternating surface polarity. A modulated and a uniform pore filling mode are proposed for different types of PMOs.

13.
Langmuir ; 32(11): 2780-6, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26915534

RESUMO

The analysis of sulfur distribution in porous carbon/sulfur nanocomposites using small-angle X-ray scattering (SAXS) is presented. Ordered porous CMK-8 carbon was used as the host matrix and gradually filled with sulfur (20-50 wt %) via melt impregnation. Owing to the almost complete match between the electron densities of carbon and sulfur, the porous nanocomposites present in essence a two-phase system and the filling of the host material can be precisely followed by this method. The absolute scattering intensities normalized per unit of mass were corrected accounting for the scattering contribution of the turbostratic microstructure of carbon and amorphous sulfur. The analysis using the Porod parameter and the chord-length distribution (CLD) approach determined the specific surface areas and filling mechanism of the nanocomposite materials, respectively. Thus, SAXS provides comprehensive characterization of the sulfur distribution in porous carbon and valuable information for a deeper understanding of cathode materials of lithium-sulfur batteries.

14.
Chemistry ; 21(1): 331-46, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25352478

RESUMO

Three-chromophore systems with light-harvesting behavior were prepared, which are based on periodic mesoporous organosilica (PMO) with crystal-like ordered structure. The organic bridges of biphenyl-PMO in the pore walls act as donors and two types of dye are incorporated in the one-dimensional channels. Consecutive two-step-Förster resonance energy transfer is observed from the biphenyl moieties to mediators (diethyl-aminocoumarin or aminoacridone), followed by energy transfer from mediators to acceptors (dibenzothiacarbocyanine, indodicarbocyanine, sulforhodamine G). High energy-transfer efficiencies ranging from 70 to 80 % are obtained for two-step-FRET, indicating that the mesochannel structure with one-dimensional ordering provides spatial arrangement of chromophore pairs for an efficient direct energy transfer. The emission wavelength can be tuned by a choice of acceptor dye: 477 nm (diethylaminocoumarin), 519 nm (aminoacridone), 567 nm (sulforhodamine G), 630 nm (dibenzothiacarbocyanine), and 692 nm (indodicarbocyanine).

15.
J Hazard Mater ; 478: 135520, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39159578

RESUMO

The reduction of hazardous nitric oxide emissions remains a significant ecological challenge. Despite the variety of possibilities, sorbents able to capture low concentrations of NO from flue gas with high selectivity are still in demand. In this work a new type of mesoporous xerogel material highly loaded with ultrastable Blatter radicals (BTR, >60 % by mass) that act as selective NO sorption sites is developed. Electron Paramagnetic Resonance (EPR) spectroscopy evidences reversible NO sorption in nanometer-scale pores of BTR-based xerogels and indicates the high NO capacity of such radical-rich sorbent. Efficient NO capture from model flue gas mixture is also evidenced in experiments with a fixed bed reactor. Such advanced properties of new materials as selectivity, strong binding with NO and an ability for mild regeneration via thermodesorption promote them for future ecological applications.

16.
Langmuir ; 29(48): 14893-902, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24188008

RESUMO

Ordered mesoporous CMK carbons and periodic mesoporous organosilica (PMO) materials have been characterized by combining nitrogen (77.4 K) and argon (87.3 K) adsorption with recently developed quenched solid density functional theory (QSDFT). Systematic, high-resolution water adsorption experiments have been performed in the temperature range from 298 to 318 K in order to ascertain the effect of surface chemistry (using periodic mesoporous organosilicas (PMOs) of given pore size) and pore size/pore geometry (using CMK-3, CMK-8 carbons) on the adsorption, pore filling, condensation and hysteresis behavior. These data reveal how the interplay between confined geometry effects and the strength of the adsorption forces influence the adsorption, wetting, and phase behavior of pore fluids. Further, our results indicate that water adsorption is quite sensitive to both small changes in pore structure and surface chemistry, showing the potential of water adsorption as a powerful complementary tool for the characterization of nanoporous solids.

18.
ACS Appl Mater Interfaces ; 15(4): 5687-5700, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669131

RESUMO

A cellulose nanofibril-based hybrid gel material was developed by grafting the polymerized stearyl acrylate (PSA) and upconversion nanoparticles (UCNPs) onto cellulose nanofibrils (CNFs) via Cu0-mediated radical polymerization (SET-LRP) to create a highly cross-linked CNF system. A two-step strategy was exploited to surface-exchange the ligand of the UCNPs from a hydrophobic ligand (oleic acid) to a hydrophilic small-molecule ligand (2-acrylamido-2-methyl-1-propanesulfonic acid, AMPS) and therefore be suitable for SET-LRP. The characteristics and properties of the hybrid material (UCNP-PSA-CNF) were monitored by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), rheology, X-ray diffraction (XRD), and microscopic analysis. Those characterization techniques prove the efficient modification of the CNF, with the presence of 1.8% UCNPs. The luminescence measurement was carried out using a homebuilt confocal microscope with a 980 nm laser source. The nanostructure of UCNPs and their incorporated CNF species were measured by small-angle X-ray scattering (SAXS). In addition, this CNF-based hybrid gel has decisive rheological properties, such as good viscoelasticity (loss tangent was below 0.35 for the UCNP-PSA-CNF gel, while the PSA-CNF gel reached the highest value of 0.42), shear-thinning behavior, and shape retention, and was successfully applied to three-dimensional (3D) gel printing throughout various 3D print models.

19.
ACS Appl Mater Interfaces ; 15(4): 5191-5197, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652301

RESUMO

Nitrogen oxides are adverse poisonous gases present in the atmosphere and having detrimental effects on the human health and environment. In this work, we propose a new type of mesoporous materials capable of capturing nitrogen monoxide (NO) from air. The designed material combines the robust Santa Barbara Amorphous-15 silica scaffold and ultrastable Blatter-type radicals acting as NO traps. Using in situ electron paramagnetic resonance spectroscopy, we demonstrate that NO capture from air is selective and reversible at practical conditions, thus making Blatter radical-decorated silica highly promising for environmental applications.

20.
Langmuir ; 28(22): 8537-49, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22574969

RESUMO

We present a new approach for modeling adsorption in metal-organic frameworks (MOFs) with unsaturated metal centers and apply it to the challenging propane/propylene separation in copper(II) benzene-1,3,5-tricarboxylate (CuBTC). We obtain information about the specific interactions between olefins and the open metal sites of the MOF using quantum mechanical density functional theory. A proper consideration of all the relevant contributions to the adsorption energy enables us to extract the component that is due to specific attractive interactions between the π-orbitals of the alkene and the coordinatively unsaturated metal. This component is fitted using a combination of a Morse potential and a power law function and is then included into classical grand canonical Monte Carlo simulations of adsorption. Using this modified potential model, together with a standard Lennard-Jones model, we are able to predict the adsorption of not only propane (where no specific interactions are present), but also of propylene (where specific interactions are dominant). Binary adsorption isotherms for this mixture are in reasonable agreement with ideal adsorbed solution theory predictions. We compare our approach with previous attempts to predict adsorption in MOFs with open metal sites and suggest possible future routes for improving our model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA