Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 69: 223-232, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31918374

RESUMO

The aim of this work was to assess the performance of a prototype compact gamma camera (MediPROBE) based on a CdTe semiconductor hybrid pixel detector, for coded aperture imaging. This probe can be adopted for various tasks in nuclear medicine such as preoperative sentinel lymph node localization, breast imaging with 99mTc radiotracers and thyroid imaging, and in general in radioguided surgery tasks. The hybrid detector is an assembly of a 1-mm thick CdTe semiconductor detector bump-bonded to a photon-counting CMOS readout circuit of the Medipix2 series or energy-sensitive Timepix detector. MediPROBE was equipped with a set of two coded aperture masks with 0.07-mm or 0.08-mm diameter holes. We performed laboratory measurements of field of view, system spatial resolution, and signal-difference-to-noise ratio, by using gamma-emitting radioactive sources (109Cd, 125I, 241Am, 99mTc). The system spatial resolution in the lateral direction was 0.56 mm FWHM (coded aperture mask with holes of 0.08 mm and a 60 keV source) at a source-collimator distance of 50 mm and a field of view of 40 mm by side. Correspondingly, the longitudinal resolution in 3D source localization tasks was about 3 mm. MediPROBE showed a significant improvement in terms of spatial resolution when equipped with the high-resolution coded apertures, with respect to the performance previously reported with 1-2 mm pinhole apertures as well as with respect to adopting a 0.35 mm pinhole aperture.


Assuntos
Câmaras gama , Radiocirurgia/instrumentação , Radiocirurgia/métodos , Compostos de Cádmio , Raios gama , Humanos , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Cintilografia , Reprodutibilidade dos Testes , Semicondutores , Razão Sinal-Ruído , Telúrio
2.
Phys Med ; 34: 18-27, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28111101

RESUMO

Charged particle therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbon ions. A critical issue is the monitoring of the beam range so to check the correct dose deposition to the tumor and surrounding tissues. The design of a new tracking device for beam range real-time monitoring in pencil beam carbon ion therapy is presented. The proposed device tracks secondary charged particles produced by beam interactions in the patient tissue and exploits the correlation of the charged particle emission profile with the spatial dose deposition and the Bragg peak position. The detector, currently under construction, uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a pixelated Lutetium Fine Silicate (LFS) crystal calorimeter. An algorithm to account and correct for emission profile distortion due to charged secondaries absorption inside the patient tissue is also proposed. Finally detector reconstruction efficiency for charged particle emission profile is evaluated using a Monte Carlo simulation considering a quasi-realistic case of a non-homogenous phantom.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Desenho de Equipamento , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica , Contagem de Cintilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA