Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2016): 20232361, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351802

RESUMO

Reports of fading vole and lemming population cycles and persisting low populations in some parts of the Arctic have raised concerns about the spread of these fundamental changes to tundra food web dynamics. By compiling 24 unique time series of lemming population fluctuations across the circumpolar region, we show that virtually all populations displayed alternating periods of cyclic/non-cyclic fluctuations over the past four decades. Cyclic patterns were detected 55% of the time (n = 649 years pooled across sites) with a median periodicity of 3.7 years, and non-cyclic periods were not more frequent in recent years. Overall, there was an indication for a negative effect of warm spells occurring during the snow onset period of the preceding year on lemming abundance. However, winter duration or early winter climatic conditions did not differ on average between cyclic and non-cyclic periods. Analysis of the time series shows that there is presently no Arctic-wide collapse of lemming cycles, even though cycles have been sporadic at most sites during the last decades. Although non-stationary dynamics appears a common feature of lemming populations also in the past, continued warming in early winter may decrease the frequency of periodic irruptions with negative consequences for tundra ecosystems.


Assuntos
Arvicolinae , Ecossistema , Animais , Dinâmica Populacional , Estações do Ano , Cadeia Alimentar , Regiões Árticas
2.
J Insect Sci ; 162016.
Artigo em Inglês | MEDLINE | ID: mdl-26945089

RESUMO

One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation.


Assuntos
Besouros , Ecossistema , Quercus , Animais , Biodiversidade , Noruega , Árvores
3.
Nature ; 456(7218): 93-7, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987742

RESUMO

The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator-rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change.


Assuntos
Arvicolinae/fisiologia , Ecossistema , Efeito Estufa , Animais , Aves/fisiologia , História do Século XX , História do Século XXI , Umidade , Modelos Biológicos , Noruega , Dinâmica Populacional , Estações do Ano , Neve , Temperatura
4.
Ambio ; 49(3): 786-800, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31332767

RESUMO

Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.


Assuntos
Arvicolinae , Ecossistema , Animais , Regiões Árticas , Canadá , Dinâmica Populacional , Federação Russa
6.
Ecol Evol ; 8(20): 10126-10137, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397452

RESUMO

There is growing evidence that biodiversity is important for ecosystem functions. Thus, identification of habitat requirements essential for current species richness and abundance to persist is crucial. Hollow oaks (Quercus spp.) are biodiversity hot spots for deadwood-dependent insect species, and the main objective of this paper was to test the effect of habitat history and current habitat distribution at various spatial scales on the associated beetle community. We used a gradient spanning 40 km from the coast to inland areas reflecting historical logging intensity (later and lower intensities inland) through 500 years in Southern Norway, to investigate whether the historical variation in oak density is influencing the structure of beetle communities in hollow oaks today. We trapped beetles in 32 hollow oaks along this gradient in forested and seminatural landscapes over two summers. We found higher species richness and total abundance inland consistent with our expectation based on historic logging intensity. Scale-specific environmental variables also affected the response; beetle abundances were controlled by local conditions, whereas beetle species richness responded to habitat on the landscape scale. This indicates that long time continuity as well as large areas of favorable habitat is necessary to maintain beetle species richness through time in these highly long-lasting structures.

7.
Science ; 340(6128): 63-6, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23559246

RESUMO

Suggestions of collapse in small herbivore cycles since the 1980s have raised concerns about the loss of essential ecosystem functions. Whether such phenomena are general and result from extrinsic environmental changes or from intrinsic process stochasticity is currently unknown. Using a large compilation of time series of vole abundances, we demonstrate consistent cycle amplitude dampening associated with a reduction in winter population growth, although regulatory processes responsible for cyclicity have not been lost. The underlying syndrome of change throughout Europe and grass-eating vole species suggests a common climatic driver. Increasing intervals of low-amplitude small herbivore population fluctuations are expected in the future, and these may have cascading impacts on trophic webs across ecosystems.


Assuntos
Arvicolinae/fisiologia , Herbivoria/fisiologia , Poaceae , Animais , Europa (Continente) , Dinâmica Populacional , Estações do Ano , Processos Estocásticos
8.
PLoS One ; 6(4): e18930, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21526118

RESUMO

The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide.


Assuntos
Biodiversidade , Conhecimento , Natureza , Cidades , Ecossistema , Humanos , Modelos Biológicos , Noruega , Padrões de Referência , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA