Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 77(9-10): 2415-2425, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29893730

RESUMO

In activated sludge (AS) process, the impact of the operational parameters on process efficiency is assumed to be correlated with the sludge properties. This study provides a better insight into these interactions by subjecting a laboratory-scale AS system to a sequence of operating condition modifications enabling typical situations of a wastewater treatment plant to be represented. Process performance was assessed and AS floc morphology (size, circularity, convexity, solidity and aspect ratio) was quantified by measuring 100,000 flocs per sample with an automated image analysis technique. Introducing 3D distributions, which combine morphological properties, allowed the identification of a filamentous bulking characterized by a floc population shift towards larger sizes and lower solidity and circularity values. Moreover, a washout phenomenon was characterized by smaller AS flocs and an increase in their solidity. Recycle ratio increase and COD:N ratio decrease both promoted a slight reduction of floc sizes and a constant evolution of circularity and convexity values. The analysis of the volume-based 3D distributions turned out to be a smart tool to combine size and shape data, allowing a deeper understanding of the dynamics of floc structure under process disturbances.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Floculação , Águas Residuárias/química , Poluentes Químicos da Água , Purificação da Água/métodos
3.
Bioresour Technol ; 394: 130181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109980

RESUMO

Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L-1, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.


Assuntos
Clorófitas , Microalgas , Conservação de Recursos Energéticos , Fenômenos Físicos , Proteínas/metabolismo , Carboidratos , Microalgas/metabolismo
4.
Ultrason Sonochem ; 98: 106492, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356214

RESUMO

Low (20 kHz) and intermediate (100 kHz) frequency ultrasound (US) were studied for their efficiency on cell destruction and metabolites extraction of the microalga T. suecica. This study revealed different levels of cell destruction. Firstly, the prolonged irradiation of US at low frequency allowed the extraction of 90% of total proteins and 70% of carbohydrates by rapidly inducing at high power (100 W or 200 W) a coiling up phenomenon of the cell walls on themselves. A low power (50 W) over short times allows extracting proteins by the perforation of the cells without destroying them, opening the perspective of milking. Furthermore, the use of 100 kHz frequency, showed lower yields of metabolites as well as a low level of cell destruction, resulting in a simple deflation of the cells.


Assuntos
Carboidratos , Proteínas
5.
J Colloid Interface Sci ; 491: 167-178, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28027466

RESUMO

This paper concerns experimental investigation of the sequenced flocculation of latex particles in a Taylor-Couette reactor. The aim of this work was to investigate the evolution of both the size and the shape of aggregates under sequenced hydrodynamics. A number of studies have focused on the evolution of the aggregate size or size distribution during steps of growth-breakage-regrowth, but aggregates generally experience steps of breakage-regrowth on repeated occasions in real operating conditions (passages near the impeller or during the transfer processes, for example). The experiments conducted in this work consisted thus of an alternation of six steps with alternately low and high shear rates under turbulent conditions. The particle size distributions were monitored throughout the sequencing, and the circularity and convexity (shape parameters) distributions were measured, enabling a more precise description of the entire floc population, rather than a fractal dimension. While the aggregate size distribution was clearly controlled by hydrodynamics, the shape distributions continuously evolved during the sequencing. The main new finding of our work notes the independence between the aggregate shape and hydrodynamics. Indeed, after multiples steps of breakage-regrowth, regardless of the aggregate size distribution and hydrodynamics, the aggregate shape seemed to reach a unique steady-state morphological distribution.

6.
J Mater Chem B ; 5(36): 7608-7621, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264236

RESUMO

Metal ions are frequently incorporated into crystalline materials to improve their electrochemical properties and to confer new physicochemical properties. Naturally-occurring phosphate apatite, which is formed geologically and in biomineralization processes, has extensive potential applications and is therefore an attractive functional material. In this study, we generate a novel building block for flexible optoelectronics using bio-inspired methods to deposit a layer of photoactive titanium-modified hydroxyapatite (TiHA) nanoparticles (NPs) on conductive polypyrrole(PPy)-coated wool yarns. The titanium concentration in the reaction solution was varied between 8-50 mol% with respect to the phosphorous, which led to titanate ions replacing phosphate in the hydroxyapatite lattice at levels up to 17 mol%. PPy was separately deposited on wool yarns by oxidative polymerization, using two dopants: (i) anthraquinone-2,6-disulfonic acid to increase the conductivity of the PPy layer and (ii) pyroglutamic acid, to reduce the resistivity of the wool yarns and to promote the heterogeneous nucleation of the TiHA NPs. A specific titanium concentration (25 mol% wrt P) was used to endow the TiHA NPs on the PPy-coated fibers with a desirable band gap value of 3.68 eV, and a specific surface area of 146 m2 g-1. This is the first time that a thin film of a wide-band gap semiconductor has been deposited on natural fibers to create a fiber-based building block that can be used to manufacture flexible electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA