Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Mol Cell ; 81(6): 1319-1336.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33539788

RESUMO

The human ubiquitin proteasome system, composed of over 700 ubiquitin ligases (E3s) and deubiquitinases (DUBs), has been difficult to characterize systematically and phenotypically. We performed chemical-genetic CRISPR-Cas9 screens to identify E3s/DUBs whose loss renders cells sensitive or resistant to 41 compounds targeting a broad range of biological processes, including cell cycle progression, genome stability, metabolism, and vesicular transport. Genes and compounds clustered functionally, with inhibitors of related pathways interacting similarly with E3s/DUBs. Some genes, such as FBXW7, showed interactions with many of the compounds. Others, such as RNF25 and FBXO42, showed interactions primarily with a single compound (methyl methanesulfonate for RNF25) or a set of related compounds (the mitotic cluster for FBXO42). Mutation of several E3s with sensitivity to mitotic inhibitors led to increased aberrant mitoses, suggesting a role for these genes in cell cycle regulation. Our comprehensive CRISPR-Cas9 screen uncovered 466 gene-compound interactions covering 25% of the interrogated E3s/DUBs.


Assuntos
Sistemas CRISPR-Cas , Mitose , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitina , Linhagem Celular , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Immunol ; 209(11): 2149-2159, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426978

RESUMO

Successful vaccination strategies offer the potential for lifelong immunity against infectious diseases and cancer. There has been increased attention regarding the limited translation of some preclinical findings generated using specific pathogen-free (SPF) laboratory mice to humans. One potential reason for the difference between preclinical and clinical findings lies in maturation status of the immune system at the time of challenge. In this study, we used a "dirty" mouse model, where SPF laboratory mice were cohoused (CoH) with pet store mice to permit microbe transfer and immune system maturation, to investigate the priming of a naive T cell response after vaccination with a peptide subunit mixed with polyinosinic-polycytidylic acid and agonistic anti-CD40 mAb. Although this vaccination platform induced robust antitumor immunity in SPF mice, it failed to do so in microbially experienced CoH mice. Subsequent investigation revealed that despite similar numbers of Ag-specific naive CD4 and CD8 T cell precursors, the expansion, differentiation, and recall responses of these CD4 and CD8 T cell populations in CoH mice were significantly reduced compared with SPF mice after vaccination. Evaluation of the dendritic cell compartment revealed reduced IL-27p28 expression by XCR1+ dendritic cells from CoH mice after vaccination, correlating with reduced T cell expansion. Importantly, administration of recombinant IL-27:EBI3 complex to CoH mice shortly after vaccination significantly boosted Ag-specific CD8 and CD4 T cell expansion, further implicating the defect to be T cell extrinsic. Collectively, our data show the potential limitation of exclusive use of SPF mice when testing vaccine efficacy.


Assuntos
Interleucina-27 , Humanos , Camundongos , Animais , Interleucina-27/metabolismo , Linfócitos T CD8-Positivos , Antígenos CD40 , Diferenciação Celular , Células Dendríticas
3.
Nature ; 562(7725): 150, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29973715

RESUMO

Change History: This Article has been retracted; see accompanying Retraction. Corrected online 20 January: In this Article, author Frank Rigo was incorrectly listed with a middle initial; this has been corrected in the online versions of the paper.

4.
Cereb Cortex ; 33(17): 9756-9763, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37415080

RESUMO

Theoretical models group maladaptive behaviors in addiction into neurocognitive domains such as incentive salience (IS), negative emotionality (NE), and executive functioning (EF). Alterations in these domains lead to relapse in alcohol use disorder (AUD). We examine whether microstructural measures in the white matter pathways supporting these domains are associated with relapse in AUD. Diffusion kurtosis imaging data were collected from 53 individuals with AUD during early abstinence. We used probabilistic tractography to delineate the fornix (IS), uncinate fasciculus (NE), and anterior thalamic radiation (EF) in each participant and extracted mean fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) within each tract. Binary (abstained vs. relapsed) and continuous (number of days abstinent) relapse measures were collected over a 4-month period. Across tracts, anisotropy measures were typically (i) lower in those that relapsed during the follow-up period and (ii) positively associated with the duration of sustained abstinence during the follow-up period. However, only KFA in the right fornix reached significance in our sample. The association between microstructural measures in these fiber tracts and treatment outcome in a small sample highlights the potential utility of the three-factor model of addiction and the role of white matter alterations in AUD.


Assuntos
Alcoolismo , Substância Branca , Humanos , Alcoolismo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Consumo de Bebidas Alcoólicas , Imagem de Tensor de Difusão/métodos , Doença Crônica , Recidiva , Anisotropia , Encéfalo/diagnóstico por imagem
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33431652

RESUMO

Precipitation extremes have increased across many regions of the United States, with further increases anticipated in response to additional global warming. Quantifying the impact of these precipitation changes on flood damages is necessary to estimate the costs of climate change. However, there is little empirical evidence linking changes in precipitation to the historically observed increase in flood losses. We use >6,600 reports of state-level flood damage to quantify the historical relationship between precipitation and flood damages in the United States. Our results show a significant, positive effect of both monthly and 5-d state-level precipitation on state-level flood damages. In addition, we find that historical precipitation changes have contributed approximately one-third of cumulative flood damages over 1988 to 2017 (primary estimate 36%; 95% CI 20 to 46%), with the cumulative impact of precipitation change totaling $73 billion (95% CI 39 to $91 billion). Further, climate models show that anthropogenic climate forcing has increased the probability of exceeding precipitation thresholds at the extremely wet quantiles that are responsible for most flood damages. Climate models project continued intensification of wet conditions over the next three decades, although a trajectory consistent with UN Paris Agreement goals significantly curbs that intensification. Taken together, our results quantify the contribution of precipitation trends to recent increases in flood damages, advance estimates of the costs associated with historical greenhouse gas emissions, and provide further evidence that lower levels of future warming are very likely to reduce financial losses relative to the current global warming trajectory.

6.
J Immunol ; 207(7): 1871-1881, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479943

RESUMO

Sepsis reduces the number and function of memory CD8 T cells within the host, contributing to the long-lasting state of immunoparalysis. Interestingly, the relative susceptibility of memory CD8 T cell subsets to quantitative/qualitative changes differ after cecal ligation and puncture (CLP)-induced sepsis. Compared with circulatory memory CD8 T cells (TCIRCM), moderate sepsis (0-10% mortality) does not result in numerical decline of CD8 tissue-resident memory T cells (TRM), which retain their "sensing and alarm" IFN-γ-mediated effector function. To interrogate this biologically important dichotomy, vaccinia virus-immune C57BL/6 (B6) mice containing CD8 TCIRCM and skin TRM underwent moderate or severe (∼50% mortality) sepsis. Severe sepsis led to increased morbidity and mortality characterized by increased inflammation compared with moderate CLP or sham controls. Severe CLP mice also displayed increased vascular permeability in the ears. Interestingly, skin CD103+ CD8 TRM, detected by i.v. exclusion or two-photon microscopy, underwent apoptosis and subsequent numerical loss following severe sepsis, which was not observed in mice that experienced moderate CLP or sham surgeries. Consequently, severe septic mice showed diminished CD8 T cell-mediated protection to localized skin reinfection. Finally, the relationship between severity of sepsis and demise in circulatory versus tissue-embedded memory CD8 T cell populations was confirmed by examining tumor-infiltrating and nonspecific CD8 T cells in B16 melanoma tumors. Thus, sepsis can differentially affect the presence and function of Ag-specific CD8 T cells that reside inside tissues/tumors depending on the severity of the insult, a notion with direct relevance to sepsis survivors and their ability to mount protective memory CD8 T cell-dependent responses to localized Ag re-encounter.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Sepse/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Circulação Sanguínea , Células Cultivadas , Progressão da Doença , Humanos , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos
7.
Pediatr Nephrol ; 38(2): 605-609, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695966

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive ciliopathy characterized by early onset retinal dystrophy, renal anomalies, postaxial polydactyly, and cognitive impairment with considerable phenotypic heterogeneity. BBS results from biallelic pathogenic variants in over 20 genes that encode key proteins required for the assembly or primary ciliary functions of the BBSome, a heterooctameric protein complex critical for homeostasis of primary cilia. While variants in BBS1 are most frequently identified in affected individuals, the renal and pulmonary phenotypes associated with BBS1 variants are reportedly less severe than those seen in affected individuals with pathogenic variants in the other BBS-associated genes. CASE-DIAGNOSIS: We report an infant with severe renal dysplasia and lethal pulmonary hypoplasia who was homozygous for the most common BBS1 pathogenic variant (c.1169 T > G; p.M390R) and also carried a predicted pathogenic variant in TTC21B (c.1846C > T; p.R616C), a genetic modifier of disease severity of ciliopathies associated with renal dysplasia and pulmonary hypoplasia. CONCLUSIONS: This report expands the phenotypic spectrum of BBS with the first infant with lethal neonatal respiratory failure associated with biallelic, pathogenic variants in BBS1 and a monoallelic, predicted pathogenic variant in TTC21B. BBS should be considered among the ciliopathies in the differential diagnosis of neonates with renal dysplasia and severe respiratory failure.


Assuntos
Síndrome de Bardet-Biedl , Insuficiência Respiratória , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fenótipo
8.
Mol Cell ; 60(1): 3-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431023

RESUMO

CDC20 and CDH1 are well-established substrate receptors for the Anaphase Promoting Complex/Cyclosome (APC/C). In this issue of Molecular Cell, Lee et al. (2015) show that these adaptors can also target cell cycle proteins for destruction through a second ubiquitin ligase, Parkin.


Assuntos
Caderinas/metabolismo , Proteínas Cdc20/metabolismo , Instabilidade Genômica , Mitose , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos
9.
Am J Primatol ; : e23565, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839050

RESUMO

Our understanding of decision-making processes and cognitive biases is ever increasing, thanks to an accumulation of testable models and a large body of research over the last several decades. The vast majority of this work has been done in humans and laboratory animals because these study subjects and situations allow for tightly controlled experiments. However, it raises questions about how this knowledge can be applied to wild animals in their complex environments. Here, we review two prominent decision-making theories, dual process theory and Bayesian decision theory, to assess the similarities in these approaches and consider how they may apply to wild animals living in heterogenous environments within complicated social groupings. In particular, we wanted to assess when wild animals are likely to respond to a situation with a quick heuristic decision and when they are likely to spend more time and energy on the decision-making process. Based on the literature and evidence from our multi-destination routing experiments on primates, we find that individuals are likely to make quick, heuristic decisions when they encounter routine situations, or signals/cues that accurately predict a certain outcome, or easy problems that experience or evolutionary history has prepared them for. Conversely, effortful decision-making is likely in novel or surprising situations, when signals and cues have unpredictable or uncertain relationships to an outcome, and when problems are computationally complex. Though if problems are overly complex, satisficing via heuristics is likely, to avoid costly mental effort. We present hypotheses for how animals with different socio-ecologies may have to distribute their cognitive effort. Finally, we examine the conservation implications and potential cognitive overload for animals experiencing increasingly novel situations caused by current human-induced rapid environmental change.

10.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132118

RESUMO

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células Epiteliais Alveolares , Autofagia , Regulação da Expressão Gênica , Lesão Pulmonar , Mutação de Sentido Incorreto , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Substituição de Aminoácidos , Animais , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Camundongos , Camundongos Mutantes , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia
12.
Am J Med Genet A ; 185(7): 2190-2197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931933

RESUMO

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2), a type of arthrogryposis multiplex congenita (AMC), is characterized by congenital joint contractures, prenatal fractures of long bones, and respiratory distress and results from biallelic variants in ASCC1. Here, we describe an infant with severe, diffuse hypotonia, congenital contractures, and pulmonary hypoplasia characteristic of SMABF2, with the unique features of cleft palate, small spleen, transverse liver, and pulmonary thromboemboli with chondroid appearance. This infant also had impaired coagulation with diffuse petechiae and ecchymoses which has only been reported in one other infant with AMC. Using trio whole genome sequencing, our proband was identified to have biallelic variants in ASCC1. Using deep next generation sequencing of parental cDNA, we characterized alteration of splicing encoded by the novel, maternally inherited ASCC1 variant (c.297-8 T > G) which provides a mechanism for functional pathogenicity. The paternally inherited ASCC1 variant is a rare nonsense variant (c.466C > T; p.Arg156*) that has been previously identified in one other infant with AMC. This report extends the phenotypic characteristics of ASCC1-associated AMC (SMABF2) and describes a novel intronic variant that partially disrupts RNA splicing.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Atrofia Muscular Espinal/genética , Artrogripose/diagnóstico por imagem , Artrogripose/fisiopatologia , Códon sem Sentido/genética , Feminino , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/fisiopatologia , Sequenciamento Completo do Genoma
13.
Nature ; 528(7583): 517-22, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26675721

RESUMO

T helper 17 (TH17) lymphocytes protect mucosal barriers from infections, but also contribute to multiple chronic inflammatory diseases. Their differentiation is controlled by RORγt, a ligand-regulated nuclear receptor. Here we identify the RNA helicase DEAD-box protein 5 (DDX5) as a RORγt partner that coordinates transcription of selective TH17 genes, and is required for TH17-mediated inflammatory pathologies. Surprisingly, the ability of DDX5 to interact with RORγt and coactivate its targets depends on intrinsic RNA helicase activity and binding of a conserved nuclear long noncoding RNA (lncRNA), Rmrp, which is mutated in patients with cartilage-hair hypoplasia. A targeted Rmrp gene mutation in mice, corresponding to a gene mutation in cartilage-hair hypoplasia patients, altered lncRNA chromatin occupancy, and reduced the DDX5-RORγt interaction and RORγt target gene transcription. Elucidation of the link between Rmrp and the DDX5-RORγt complex reveals a role for RNA helicases and lncRNAs in tissue-specific transcriptional regulation, and provides new opportunities for therapeutic intervention in TH17-dependent diseases.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Longo não Codificante/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , RNA Helicases DEAD-box/genética , Feminino , Regulação da Expressão Gênica/genética , Cabelo/anormalidades , Doença de Hirschsprung/genética , Humanos , Síndromes de Imunodeficiência/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Especificidade de Órgãos , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Doenças da Imunodeficiência Primária , Ligação Proteica , RNA Longo não Codificante/genética , Transcrição Gênica/genética
14.
Hum Mutat ; 41(7): 1298-1307, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196812

RESUMO

ABCA3 transports phospholipids across lamellar body membranes in pulmonary alveolar type II cells and is required for surfactant assembly. Rare, biallelic, pathogenic ABCA3 variants result in lethal neonatal respiratory distress syndrome and childhood interstitial lung disease. Qualitative functional characterization of ABCA3 missense variants suggests two pathogenic classes: disrupted intracellular trafficking (type I mutant) or impaired ATPase-mediated phospholipid transport into the lamellar bodies (type II mutant). We qualitatively compared wild-type (WT-ABCA3) with four uncharacterized ABCA3 variants (c.418A>C;p.Asn140His, c.3609_3611delCTT;p.Phe1203del, c.3784A>G;p.Ser1262Gly, and c.4195G>A;p.Val1399Met) in A549 cells using protein processing, colocalization with intracellular organelles, lamellar body ultrastructure, and ATPase activity. We quantitatively measured lamellar body-like vesicle diameter and intracellular ABCA3 trafficking using fluorescence-based colocalization. Three ABCA3 variants (p.Asn140His, p.Ser1262Gly, and p.Val1399Met) were processed and trafficked normally and demonstrated well-organized lamellar body-like vesicles, but had reduced ATPase activity consistent with type II mutants. P.Phe1203del was processed normally, had reduced ATPase activity, and well-organized lamellar body-like vesicles, but quantitatively colocalized with both endoplasmic reticulum and lysosomal markers, an intermediate phenotype suggesting disruption of both intracellular trafficking and phospholipid transport. All ABCA3 mutants demonstrated mean vesicle diameters smaller than WT-ABCA3. Qualitative and quantitative functional characterization of ABCA3 variants informs mechanisms of pathogenicity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Células A549 , Vesículas Citoplasmáticas , Humanos , Doenças Pulmonares Intersticiais/genética , Mutação de Sentido Incorreto , Alvéolos Pulmonares , Surfactantes Pulmonares
15.
Am J Respir Cell Mol Biol ; 63(4): 436-443, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692933

RESUMO

Rare or private, biallelic variants in the ABCA3 (ATP-binding cassette transporter A3) gene are the most common monogenic cause of lethal neonatal respiratory failure and childhood interstitial lung disease. Functional characterization of fewer than 10% of over 200 disease-associated ABCA3 variants (majority missense) suggests either disruption of ABCA3 protein trafficking (type I) or of ATPase-mediated phospholipid transport (type II). Therapies remain limited and nonspecific. A scalable platform is required for functional characterization of ABCA3 variants and discovery of pharmacologic correctors. To address this need, we first silenced the endogenous ABCA3 locus in A549 cells with CRISPR/Cas9 genome editing. Next, to generate a parent cell line (A549/ABCA3-/-) with a single recombination target site for genomic integration and stable expression of individual ABCA3 missense variant cDNAs, we used lentiviral-mediated integration of a LoxFAS cassette, FACS, and dilutional cloning. To assess the fidelity of this cell-based model, we compared functional characterization (ABCA3 protein processing, ABCA3 immunofluorescence colocalization with intracellular markers, ultrastructural vesicle phenotype) of two individual ABCA3 mutants (type I mutant, p.L101P; type II mutant, p.E292V) in A549/ABCA3-/- cells and in both A549 cells and primary, human alveolar type II cells that transiently express each cDNA after adenoviral-mediated transduction. We also confirmed pharmacologic rescue of ABCA3 variant-encoded mistrafficking and vesicle diameter in A549/ABCA3-/- cells that express p.G1421R (type I mutant). A549/ABCA3-/- cells provide a scalable, genetically versatile, physiologically relevant functional genomics platform for discovery of variant-specific mechanisms that disrupt ABCA3 function and for screening of potential ABCA3 pharmacologic correctors.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genoma/genética , Mutação de Sentido Incorreto/genética , Células A549 , Adenosina Trifosfatases/genética , Células Epiteliais Alveolares/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Imunofluorescência/métodos , Edição de Genes/métodos , Genômica/métodos , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética
16.
Am J Med Genet A ; 182(5): 1053-1065, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083401

RESUMO

Pathogenic variants in KMT2D, which encodes lysine specific methyltransferase 2D, cause autosomal dominant Kabuki syndrome, associated with distinctive dysmorphic features including arched eyebrows, long palpebral fissures with eversion of the lower lid, large protuberant ears, and fetal finger pads. Most disease-causing variants identified to date are putative loss-of-function alleles, although 15-20% of cases are attributed to missense variants. We describe here four patients (including one previously published patient) with de novo KMT2D missense variants and with shared but unusual clinical findings not typically seen in Kabuki syndrome, including athelia (absent nipples), choanal atresia, hypoparathyroidism, delayed or absent pubertal development, and extreme short stature. These individuals also lack the typical dysmorphic facial features found in Kabuki syndrome. Two of the four patients had severe interstitial lung disease. All of these variants cluster within a 40-amino-acid region of the protein that is located just N-terminal of an annotated coiled coil domain. These findings significantly expand the phenotypic spectrum of features associated with variants in KMT2D beyond those seen in Kabuki syndrome and suggest a possible new underlying disease mechanism for these patients.


Assuntos
Anormalidades Múltiplas/genética , Mama/anormalidades , Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Doenças Hematológicas/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Mama/diagnóstico por imagem , Mama/fisiopatologia , Doenças Mamárias , Criança , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/fisiopatologia , Face/diagnóstico por imagem , Face/patologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Humanos , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Fenótipo , Doenças Vestibulares/diagnóstico por imagem , Doenças Vestibulares/patologia , Sequenciamento do Exoma , Adulto Jovem
17.
J Immunol ; 200(5): 1543-1553, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463691

RESUMO

Sepsis results in a deluge of pro- and anti-inflammatory cytokines, leading to lymphopenia and chronic immunoparalysis. Sepsis-induced long-lasting immunoparalysis is defined, in part, by impaired CD4 and CD8 αß T cell responses in the postseptic environment. The dysfunction in T cell immunity affects naive, effector, and memory T cells and is not restricted to classical αß T cells. Although sepsis-induced severe and transient lymphopenia is a contributory factor to diminished T cell immunity, T cell-intrinsic and -extrinsic factors/mechanisms also contribute to impaired T cell function. In this review, we summarize the current knowledge of how sepsis quantitatively and qualitatively impairs CD4 and CD8 T cell immunity of classical and nonclassical T cell subsets and discuss current therapeutic approaches being developed to boost the recovery of T cell immunity postsepsis induction.


Assuntos
Sepse/imunologia , Linfócitos T/imunologia , Animais , Citocinas/imunologia , Humanos , Inflamação/imunologia , Linfopenia/imunologia
18.
J Immunol ; 201(7): 1837-1841, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135180

RESUMO

Various malignancies are reproducibly cured in mouse models, but most cancer immunotherapies show objective responses in a fraction of treated patients. One reason for this disconnect may be the use of young, lean mice lacking immune-altering comorbidities present in cancer patients. Although many cancer patients are overweight or obese, the effect of obesity on antitumor immunity is understudied in preclinical tumor models. We examined the effect of obesity on two immunotherapeutic models: systemic anti-CTLA-4 mAb and intratumoral delivery of a TRAIL-encoding adenovirus plus CpG. Both therapies were effective in lean mice, but neither provided a survival benefit to diet-induced obese BALB/c mice. Interestingly, tumor-bearing leptin-deficient (ob/ob) obese BALB/c mice did respond to treatment. Moreover, reducing systemic leptin with soluble leptin receptor:Fc restored the antitumor response in diet-induced obese mice. These data demonstrate the potential of targeting leptin to improve tumor immunotherapy when immune-modulating comorbidities are present.


Assuntos
Adenocarcinoma/metabolismo , Envelhecimento/fisiologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/métodos , Neoplasias Renais/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Adenocarcinoma/terapia , Adenoviridae/genética , Animais , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Imunidade , Neoplasias Renais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Obesidade/terapia , Oligodesoxirribonucleotídeos/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
19.
J Immunol ; 201(2): 337-342, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29875151

RESUMO

Lymphocytes enter tissues from blood vessels through a well-characterized three-step process of extravasation. To our knowledge, nonvascular routes of lymphocyte entry have not been described. In this article, we report that Ag-experienced CD8 T cells in mice recirculate from blood through the peritoneal cavity. In the event of infection, Ag-experienced CD8 T cell subsets adhered to visceral organs, indicating potential transcapsular immunosurveillance. Focusing on the male genital tract (MGT), we observed Ag-experienced CD8 T cell migration from the peritoneal cavity directly to the infected MGT across the capsule, which was dependent on the extracellular matrix receptor CD44. We also observed that, following clearance of infection, the MGT retained functional resident memory CD8 T cells. These data suggest that recirculation through body cavities may provide T cells with opportunities for broad immunosurveillance and potential nonvascular mechanisms of entry.


Assuntos
Subpopulações de Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Matriz Extracelular/imunologia , Genitália Masculina/imunologia , Receptores de Hialuronatos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monitorização Imunológica/métodos , Cavidade Peritoneal/fisiologia , Infecções do Sistema Genital/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA