Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 273(2): 91-104, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417390

RESUMO

Lowicryl resins enable processing of biological material for electron microscopy at the lowest temperatures compatible with resin embedding. When combined with high-pressure freezing and freeze-substitution, Lowicryl embedding supports preservation of fine structural details and fluorescent markers. Here, we analysed the applicability of Lowicryl HM20 embedding for focused ion beam (FIB) scanning electron microscopy (SEM) tomography of Drosophila melanogaster embryonic and larval model systems. We show that the freeze-substitution with per-mill concentrations of uranyl acetate provided sufficient contrast and an image quality of SEM imaging in the range of similar samples analysed by transmission electron microscopy (TEM). Preservation of genetically encoded fluorescent proteins allowed correlative localization of regions of interest (ROI) within the embedded tissue block. TEM on sections cut from the block face enabled evaluation of structural preservation to allow ROI ranking and thus targeted, time-efficient FIB-SEM tomography data collection. The versatility of Lowicryl embedding opens new perspectives for designing hybrid SEM-TEM workflows to comprehensively analyse biological structures. LAY DESCRIPTION: Focused ion beam scanning electron microscopy is becoming a widely used technique for the three-dimensional analysis of biological samples at fine structural details beyond levels feasible for light microscopy. To withstand the abrasion of material by the ion beam and the imaging by the scanning electron beam, biological samples have to be embedded into resins, most commonly these are very dense epoxy-based plastics. However, dense resins generate electron scattering which interferes with the signal from the biological specimen. Furthermore, to improve the imaging contrast, epoxy embedding requires chemical treatments with e.g. heavy metals, which deteriorate the ultrastructure of the biological specimen. In this study we explored the applicability of an electron lucent resin, Lowicryl HM 20, for focused ion beam scanning electron microscopy. The Lowicryl embedding workflow operates at milder chemical treatments and lower temperatures, thus preserving the sub-cellular and sub-organellar organization, as well as fluorescent markers visible by light microscopy. Here we show that focus ion beam scanning electron microscopy of Lowicryl-embedded fruit flies tissues provides reliable imaging revealing fine structural details. Our workflow benefited from use of transmission electron microscopy for the quality control of the ultrastructural preservation and fluorescent light microscopy for localization of regions of interest. The versatility of Lowicryl embedding opens up new perspectives for designing hybrid workflows combining fluorescent light, scanning, and transmission electron microscopy techniques to comprehensively analyze biological structures.


Assuntos
Resinas Acrílicas , Drosophila melanogaster/embriologia , Técnicas Histológicas/métodos , Microscopia Eletrônica de Varredura/métodos , Inclusão do Tecido , Animais , Substituição ao Congelamento , Congelamento , Microscopia Eletrônica de Transmissão/métodos
2.
Nanotechnology ; 23(18): 185702, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22499135

RESUMO

CoPt-C binary alloys have been fabricated by focused-electron-beam-induced deposition by the simultaneous use of Co2(CO)8 and (CH3)3CH3C5H4Pt as precursor gases. The alloys are made of CoPt nanoparticles embedded in a carbonaceous matrix. TEM investigations show that as-grown samples are in an amorphous phase. By means of a room temperature low-energy electron irradiation treatment the CoPt nanoparticles transform into face-centered tetragonal L10 nanocrystallites. In parallel, the system undergoes a transition from a superparamagnetic to a ferromagnetic state at room temperature. By variation of the post-growth irradiation dose the electrical and magneto-transport properties of the alloy can be continuously tuned.

3.
Nanoscale ; 10(4): 2162-2169, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29327031

RESUMO

CdTe core and CdTe/CdSe core/shell quantum dots (QD) are investigated with steady state and time-resolved spectroscopic methods. The coating of the CdTe core with a 0.7 nm thick CdSe shell shifts the lowest exciton absorption band to the red by more than 70 nm making the CdTe/CdSe QD an interesting candidate for application in solar energy conversion. Femtosecond transient absorption measurements are applied to study the photoinduced electron transfer (ET) to the molecular acceptor methylene blue (MB). ET times after single excitation of the QD are determined for different MB : QD ratios. The ET reaction is significantly faster in the case of the MB-CdTe/CdSe QD complexes, indicative of an altered charge distribution in the photoexcited heterostructure with a higher electron density in the CdSe shell. As a result of the efficient absorption of incoming light and the faster ET reaction, the amount of reduced MB in the time resolved experiments is higher for CdTe/CdSe QD compared to CdTe QD.

4.
Curr Biol ; 11(15): 1168-75, 2001 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-11516947

RESUMO

BACKGROUND: The transfer of phage genomes into host cells is a well established but only dimly understood process. Following the irreversible phage binding to a receptor in the bacterial outer membrane, the DNA is ejected from the viral capsid and transferred across the bacterial cell envelope. In Escherichia coli, the mere interaction of the phage T5 with its outer membrane receptor, the ferrichrome transporter FhuA, is sufficient to trigger the release of the DNA from the phage capsid. Although the structure of FhuA has been determined at atomic resolution, the understanding of the respective roles of phage and bacterial proteins in DNA channeling and the mechanisms by which the transfer of the DNA is mediated remains fragmentary. RESULTS: We report on the use of cryo-electron tomography to analyze, at a molecular level, the interactions of T5 phages bound to FhuA-containing proteoliposomes. The resolution of the three-dimensional reconstructions allowed us to visualize the phage-proteoliposome interaction before and after release of the genome into the vesicles. After binding to its receptor, the straight fiber of the phage T5 (the "tip" of the viral tail made of pb2 proteins) traverses the lipid bilayer, allowing the transfer of its double-stranded DNA (121,000 bp) into the proteoliposome. Concomitantly, the tip of the tail undergoes a major conformational change; it shrinks in length (from 50 to 23 nm), while its diameter increases (from 2 to 4 nm). CONCLUSIONS: Taking into account the crystal structure of FhuA, we conclude that FhuA is only used as a docking site for the phage. The tip of the phage tail acts like an "injection needle," creating a passageway at the periphery of FhuA, through which the DNA crosses the membrane. A possible mechanistic scenario for the transfer of the viral genome into bacteria is discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Bacteriófagos/genética , Proteínas de Escherichia coli/genética , Técnicas de Transferência de Genes , Genoma Viral , Proteolipídeos , Receptores Virais/genética , Microscopia Crioeletrônica , DNA Viral/genética , Membranas Artificiais
5.
IEEE Trans Biomed Eng ; 48(2): 213-22, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11296877

RESUMO

Computer tomography (CT) techniques are the most widely applicable noninvasive methods for obtaining two- and three-dimensional insights into biological objects. They comprise CT for medical applications, as well as electron tomography used for investigating macromolecular and cellular specimens. Recent advances in the recording schemes improve the speed and resolution frontiers and provide new insights into structural organizations of different objects. However, many data sets suffer from a poor signal-to-noise ratio, which severely hinders the application of methods for automated data analysis, such as feature extraction, segmentation, and visualization. We propose the multidimensional implementation of two powerful signal reconstruction techniques, namely invariant wavelet filtering and nonlinear anisotropic diffusion. We establish quantitative measures to assess the signal reconstruction performance on synthetic data and biomedical images. The appropriate multidimensional implementations of wavelet and diffusion techniques allow for a superior performance over conventional noise-reduction methods. We derive the conditions for the choice between wavelet and diffusion techniques with respect to an optimal signal reconstruction performance. Results of applying the proposed methods in two very different imaging domains-molecular biology and clinical research-are provided.


Assuntos
Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X , Anisotropia , Microscopia Eletrônica de Transmissão e Varredura , Dinâmica não Linear
6.
J Struct Biol ; 135(3): 239-50, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11722164

RESUMO

Electron tomography is a powerful technique capable of giving unique insights into the three-dimensional structural organization of pleomorphic biological objects. However, visualization and interpretation of the resulting volumetric data are hampered by an extremely low signal-to-noise ratio, especially when ice-embedded biological specimens are investigated. Usually, isosurface representation or volume rendering of such data is hindered without any further signal enhancement. We propose a novel technique for noise reduction based on nonlinear anisotropic diffusion. The approach combines efficient noise reduction with excellent signal preservation and is clearly superior to conventional methods (e.g., low-pass and median filtering) and invariant wavelet transform filtering. The gain in the signal-to-noise ratio is verified and demonstrated by means of Fourier shell correlation. Improved visualization performance after processing the 3D images is demonstrated with two examples, tomographic reconstructions of chromatin and of a mitochondrion. Parameter settings and discretization stencils are presented in detail.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Anisotropia , Cromatina/química , Cromatina/ultraestrutura , Difusão , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Substâncias Macromoleculares , Modelos Moleculares , Estrutura Molecular , Dinâmica não Linear , Tomografia/estatística & dados numéricos
7.
J Struct Biol ; 129(1): 48-56, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10675296

RESUMO

Cryo-electron tomography was used to study the structural organization of whole frozen-hydrated mitochondria from Neurospora crassa. Unlike mitochondria from many other species and tissues, in this case the cristae form a three-dimensional network of interconnected lamellae. Basically, the three-dimensional structure of ice-embedded mitochondria from this species is consistent with previous descriptions of mitochondria prepared by chemical fixation and resin embedding. Nonetheless, ice-embedded mitochondria display some important differences: the outer surface of the mitochondria was found to be rather smooth, the intermembrane space was constant in width, and distinct contact sites between the membranes were clearly revealed. Furthermore ATP synthase particles on the outer surface of an "inside-out vesicle" were visible in 3-D reconstructions. Thus, cryo-electron tomography can provide detailed insights into these organelles with minimal perturbations of the physiological state. This indicates that it is a realistic goal to achieve "molecular resolution" with rather large biological specimens in the near future, ultimately allowing the identification and localization of macromolecules in their cellular context.


Assuntos
Microscopia Crioeletrônica , Mitocôndrias/ultraestrutura , Neurospora crassa/ultraestrutura , Tomografia , Processamento de Imagem Assistida por Computador , Membranas Intracelulares/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 97(26): 14245-50, 2000 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-11087814

RESUMO

Electron tomography is the only technique available that allows us to visualize the three-dimensional structure of unfixed and unstained cells currently with a resolution of 6-8 nm, but with the prospect to reach 2-4 nm. This raises the possibility of detecting and identifying specific macromolecular complexes within their cellular context by virtue of their structural signature. Templates derived from the high-resolution structure of the molecule under scrutiny are used to search the reconstructed volume. Here we outline and test a computationally feasible two-step procedure: In a first step, mean-curvature motion is used for segmentation, yielding subvolumes that contain with a high probability macromolecules in the expected size range. Subsequently, the particles contained in the subvolumes are identified by cross-correlation, using a set of three-dimensional templates. With simulated and real tomographic data we demonstrate that such an approach is feasible and we explore the detection limits. Even structurally similar particles, such as the thermosome, GroEL, and the 20S proteasome can be identified with high fidelity. This opens up exciting prospects for mapping the territorial distribution of macromolecules and for analyzing molecular interactions in situ.


Assuntos
Chaperonina 60/química , Cisteína Endopeptidases/química , Complexos Multienzimáticos/química , Algoritmos , Chaperonina 60/isolamento & purificação , Cisteína Endopeptidases/isolamento & purificação , Substâncias Macromoleculares , Modelos Moleculares , Complexos Multienzimáticos/isolamento & purificação , Complexo de Endopeptidases do Proteassoma , Conformação Proteica , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA