Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Macromol Rapid Commun ; 43(12): e2100614, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34873776

RESUMO

Molecular dynamics (MD) simulations of melt films of poly(alkyl methacrylate)s (PAMAs) with methyl, ethyl, and n-butyl substituents, respectively, have been performed using an all-atom model to investigate their surface and thin film properties. The applied all-atom force fields predict the bulk densities of PAMAs in good agreement with experiments. Moreover, predictions of the surface tensions of PMMA, PEMA, and Pn-BMA melts are in reasonably good agreement with experiments. The density profiles and orientational-order parameters of chain segments show atomic-scale characteristics in the air/polymer interfacial region. In the surface region, the backbone segments of PAMAs form a well-defined layer structure with the chain vectors oriented parallel to the surface, while the ester side-chains strongly segregate to the surface region and show perpendicular orientation to the surface, with the most pronounced surface segregation noted for Pn-BMA. Such surface segregations of chain segments make it difficult to apply a simple relationship between the cohesive energy density and the surface tension of polymers, for example, and should be taken into account in relating the surface/thin film characteristics to the bulk properties of polymers in general.


Assuntos
Metacrilatos , Simulação de Dinâmica Molecular , Polímeros/química , Propriedades de Superfície , Tensão Superficial
2.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946531

RESUMO

Understanding the impact of different bridging groups in the two-step polymerization of poly(ethylene glycol) (PEG)-incorporated polyimide (PI) materials is significant. It is known that the proton exchange membranes (PEMs) used in industry today can experience performance degradation under rising temperature conditions. Many efforts have been devoted to overcoming this problem by improving the physical and mechanical properties that extend the hygrothermal life of a PEM. This work examines the effect of oxygenated and fluorinated bridging anhydrides in the production of PI-PEG PEMs. It is shown that the dianhydride identity and the amount incorporated in the synthesis influences the properties of the segmented block copolymer (SBC) membranes, such as increased ionic liquid uptake (ILU), enhanced conductivity and higher Young's modulus favoring stiffness comparable to Nafion 115, an industrial standard. Investigations on the ionic conductivity of PI-PEG membranes were carried out to determine how thermal annealing would affect the material's performance as an ion-exchange membrane. By applying a thermal annealing process at 60 °C for one hour, the conductivities of synthesized segmented block copolymer membranes values were increased. The effect of thermal annealing on the mechanical properties was also shown for the undoped SBC via measuring the change in the Young's modulus. These higher ILU abilities and mechanical behavior changes are thought to arise from the interaction between PEG molecules and ethylammonium nitrate (EAN) ionic liquid (IL). In addition, higher interconnected routes provide a better ion-transfer environment within the membrane. It was found that the conductivity was increased by a factor of ten for undoped and a factor of two to seven for IL-doped membranes after thermal annealing.

3.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917907

RESUMO

Proton exchange membranes (PEMs) suffer performance degradation under certain conditions-temperatures greater than 80 °C, relative humidity less than 50%, and water retention less than 22%. Novel materials are needed that have improved water retention, stability at higher temperatures, flexibility, conductivity, and the ability to function at low humidity. This work focuses on polyimide-poly(ethylene glycol) (PI-PEG) segmented block copolymer (SBC) membranes with high conductivity and mechanical strength. Membranes were prepared with one of two ionic liquids (ILs), either ethylammonium nitrate (EAN) or propylammonium nitrate (PAN), incorporated within the membrane structure to enhance the proton exchange capability. Ionic liquid uptake capacities were compared for two different temperatures, 25 and 60 °C. Then, conductivities were measured for a series of combinations of undoped or doped unannealed and undoped or doped annealed membranes. Stress and strain tests were performed for unannealed and thermally annealed undoped membranes. Later, these experiments were repeated for doped unannealed and thermally annealed. Mechanical and conductivity data were interpreted in the context of prior small angle X-ray scattering (SAXS) studies on similar materials. We have shown that varying the compositions of polyimide-poly(ethylene glycol) (PI-PEG) SBCs allowed the morphology in the system to be tuned. Since polyimides (PI) are made from the condensation of dianhydrides and diamines, this was accomplished using components having different functional groups. Dianhydrides having either fluorinated or oxygenated functional groups and diamines having either fluorinated or oxygenated diamines were used as well as mixtures of these species. Changing the morphology by creating macrophase separation elevated the IL uptake capacities, and in turn, increased their conductivities by a factor of three or more compared to Nafion 115. The stiffness of the membranes synthesized in this work was comparable to Nafion 115 and, thus, sufficient for practical applications.

4.
Angew Chem Int Ed Engl ; 60(14): 7971-7979, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403788

RESUMO

Monodispersed metal and semiconductor nanocrystals have attracted great attention in fundamental and applied research due to their tunable size, morphology, and well-defined chemical composition. Utilizing these nanocrystals in a controllable way is highly desirable especially when using them as building blocks for the preparation of nanostructured materials. Their deposition onto oxide materials provide them with wide applicability in many areas, including catalysis. However, so far deposition methods are limited and do not provide control to achieve high particle loadings. This study demonstrates a general approach for the deposition of hydrophobic ligand-stabilized nanocrystals on hydrophilic oxide supports without ligand-exchange. Surface functionalization of the supports with primary amine groups either using an organosilane ((3-aminopropyl)trimethoxysilane) or bonding with aminoalcohols (3-amino-1,2-propanediol) were found to significantly improve the interaction between nanocrystals and supports achieving high loadings (>10 wt. %). The bonding method with aminoalcohols guarantees the opportunity to remove the binding molecules thus allowing clean metal/oxide materials to be obtained, which is of great importance in the preparation of supported nanocrystals for heterogeneous catalysis.

5.
J Am Chem Soc ; 142(34): 14481-14494, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786792

RESUMO

Supported metal nanoparticles are essential components of high-performing catalysts, and their structures are intensely researched. In comparison, nanoparticle spatial distribution in powder catalysts is conventionally not quantified, and the influence of this collective property on catalyst performance remains poorly investigated. Here, we demonstrate a general colloidal self-assembly method to control uniformity of nanoparticle spatial distribution on common industrial powder supports. We quantify distributions on the nanoscale using image statistics and show that the type of nanospatial distribution determines not only the stability, but also the activity of heterogeneous catalysts. Widely investigated systems (Au-TiO2 for CO oxidation thermocatalysis and Pd-TiO2 for H2 evolution photocatalysis) were used to showcase the universal importance of nanoparticle spatial organization. Spatially and temporally resolved microkinetic modeling revealed that nonuniformly distributed Au nanoparticles suffer from local depletion of surface oxygen, and therefore lower CO oxidation activity, as compared to uniformly distributed nanoparticles. Nanoparticle spatial distribution also determines the stability of Pd-TiO2 photocatalysts, because nonuniformly distributed nanoparticles sinter while uniformly distributed nanoparticles do not. This work introduces new tools to evaluate and understand catalyst collective (ensemble) properties in powder catalysts, which thereby pave the way to more active and stable heterogeneous catalysts.


Assuntos
Monóxido de Carbono/química , Ouro/química , Hidrogênio/química , Nanopartículas/química , Paládio/química , Titânio/química , Catálise , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Pós , Propriedades de Superfície
6.
Langmuir ; 35(13): 4460-4470, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30836748

RESUMO

Depositing a morphologically uniform monolayer film of graphene oxide (GO) single-layer sheets is an important step in the processing of many composites and devices. Conventional Langmuir-Blodgett (LB) deposition is often considered to give the highest degree of morphology control, but film microstructures still vary widely between GO samples. The main challenge is in the sensitive self-assembly of GO samples with different sheet sizes and degrees of oxidation. To overcome this drawback, here, we identify a general method that relies on robust assembly between GO and a cationic surfactant (cationic surfactant-assisted LB). We systematically compared conventional LB and cationic surfactant-assisted LB for three common GO samples of widely different sheet sizes and degrees of oxidation. Although conventional LB may occasionally provide satisfactory film morphology, cationic surfactant-assisted LB is general and allows deposition of films with tunable and uniform morphologies-ranging from close-packed to overlapping single layers-from all three types of GO samples investigated. Because cationic surfactant-assisted LB is robust and general, we expect this method to broaden and facilitate the use of GO in many applications where precise control over film morphology is crucial.

7.
Langmuir ; 34(33): 9683-9691, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30025460

RESUMO

Langmuir-Blodgett deposition is a popular route to produce thin films of graphene oxide for applications such as transparent conductors and biosensors. Unfortunately, film morphologies vary from sample to sample, often with undesirable characteristics such as folded sheets and patchwise depositions. In conventional Langmuir-Blodgett deposition of graphene oxide, alcohol (typically methanol) is used to spread the graphene oxide sheets onto an air-water interface before deposition onto substrates. Here we show that methanol gives rise to Marangoni flow, which fundamentally limits control over Langmuir-Blodgett depositions of graphene oxide. We directly identified the presence of Marangoni flow by using photography, and we evaluated depositions with atomic force microscopy and scanning electron microscopy. The disruptive effect of Marangoni flow was demonstrated by comparing conventional Langmuir-Blodgett depositions to depositions where Marangoni flow was suppressed by a surfactant. Because methanol is the standard spreading solvent for conventional Langmuir-Blodgett deposition of graphene oxide, Marangoni flow is a general problem and may partly explain the wide variety of undesirable film morphologies reported in the literature.

8.
J Chem Phys ; 146(20): 203314, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571360

RESUMO

United-atom molecular-dynamics computer simulations of atactic polystyrene (PS) were performed for the bulk and free-standing films of 2 nm-20 nm thickness, for both linear and cyclic polymers comprised of 80 monomers. Simulated volumetric glass-transition temperatures (Tg) show a strong dependence on the film thickness below 10 nm. The glass-transition temperature of linear PS is 13% lower than that of the bulk for 2.5 nm-thick films, as compared to less than 1% lower for 20 nm films. Our studies reveal that the fraction of the chain-end groups is larger in the interfacial layer with its outermost region approximately 1 nm below the surface than it is in the bulk. The enhanced population of the end groups is expected to result in a more mobile interfacial layer and the consequent dependence of Tg on the film thickness. In addition, the simulations show an enrichment of backbone aliphatic carbons and concomitant deficit of phenyl aromatic carbons in the interfacial film layer. This deficit would weaken the strong phenyl-phenyl aromatic (π-π) interactions and, hence, lead to a lower film-averaged Tg in thin films, as compared to the bulk sample. To investigate the relative importance of the two possible mechanisms (increased chain ends at the surface or weakened π-π interactions in the interfacial region), the data for linear PS are compared with those for cyclic PS. For the cyclic PS, the reduction of the glass-transition temperature is also significant in thin films, albeit not as much as for linear PS. Moreover, the deficit of phenyl carbons in the film interface is comparable to that observed for linear PS. Therefore, chain-end effects alone cannot explain the observed pronounced Tg dependence on the thickness of thin PS films; the weakened phenyl-phenyl interactions in the interfacial region seems to be an important cause as well.

9.
Gastroenterology ; 148(3): 616-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479136

RESUMO

BACKGROUND & AIMS: Phosphoinositides (PIs) bind and regulate localization of proteins via a variety of structural motifs. PI 4,5-bisphosphate (PI[4,5]P2) interacts with and modulates the function of several proteins involved in intracellular vesicular membrane trafficking. We investigated interactions between PI(4,5)P2 and hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and effects on the viral life cycle. METHODS: We used a combination of quartz crystal microbalance, circular dichroism, molecular genetics, and immunofluorescence to study specific binding of PI(4,5)P2 by the HCV NS5A protein. We evaluated the effects of PI(4,5)P2 on the function of NS5A by expressing wild-type or mutant forms of Bart79I or FL-J6/JFH-5'C19Rluc2AUbi21 RNA in Huh7 cells. We also studied the effects of strategies designed to inhibit PI(4,5)P2 on HCV replication in these cells. RESULTS: The N-terminal amphipathic helix of NS5A bound specifically to PI(4,5)P2, inducing a conformational change that stabilized the interaction between NS5A and TBC1D20, which is required for HCV replication. A pair of positively charged residues within the amphipathic helix (the basic amino acid PI(4,5)P2 pincer domain) was required for PI(4,5)P2 binding and replication of the HCV-RNA genome. A similar motif was found to be conserved across all HCV isolates, as well as amphipathic helices of many pathogens and apolipoproteins. CONCLUSIONS: PI(4,5)P2 binds to HCV NS5A to promote replication of the viral RNA genome in hepatocytes. Strategies to disrupt this interaction might be developed to inhibit replication of HCV and other viruses.


Assuntos
Genoma Viral , Hepacivirus/genética , Hepatócitos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sobrevivência Celular , Dicroísmo Circular , Hepacivirus/metabolismo , Humanos , Microscopia de Fluorescência , Estrutura Secundária de Proteína , Técnicas de Microbalança de Cristal de Quartzo , Análise de Sequência de RNA , Proteínas rab1 de Ligação ao GTP/metabolismo
10.
J Mater Sci Mater Med ; 26(2): 107, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665845

RESUMO

Three-dimensional scaffolds based on inverted colloidal crystals (ICCs) were fabricated from sequentially polymerized interpenetrating polymer network (IPN) hydrogels of poly(ethyleneglycol) and poly(acrylic acid). This high-strength, high-water-content IPN hydrogel may be suitable for use in an artificial cornea application. Development of a highly porous, biointegrable region at the periphery of the artificial cornea device is critical to long-term retention of the implant. The ICC fabrication technique produced scaffolds with well-controlled, tunable pore and channel dimensions. When surface functionalized with extracellular matrix proteins, corneal fibroblasts were successfully cultured on IPN hydrogel scaffolds, demonstrating the feasibility of these gels as materials for the artificial cornea porous periphery. Porous hydrogels with and without cells were visualized non-invasively in the hydrated state using variable-pressure scanning electron microscopy.


Assuntos
Resinas Acrílicas/química , Bioprótese , Transplante de Córnea/instrumentação , Hidrogéis/síntese química , Polietilenoglicóis/química , Alicerces Teciduais , Órgãos Bioartificiais , Regeneração Tecidual Guiada/instrumentação , Dureza , Teste de Materiais , Porosidade , Viscosidade
11.
Langmuir ; 30(8): 2152-60, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24512463

RESUMO

We have investigated the effect of freeze-thaw (FT) pretreatment on the adhesion and rupture of extruded vesicles over a wide range of vesicle sizes. To characterize the size distributions of vesicles obtained with and without FT pretreatment, dynamic light scattering (DLS) experiments were performed. The interaction between extruded vesicles and a silicon oxide substrate was investigated by quartz crystal microbalance with dissipation (QCM-D) monitoring, with a focus on comparative analysis of similar-sized vesicles with and without FT pretreatment. Under this condition, there was a smaller mass load at the critical coverage associated with untreated vesicles, as compared to vesicles which had been subjected to FT pretreatment. In addition, the rupture of treated vesicles generally resulted in formation of a complete planar bilayer, while the adlayer was more heterogeneous when employing untreated vesicles. Combined with kinetic analysis and extended-DLVO model calculations, the experimental evidence suggests that the differences arising from FT pretreatment are due to characteristics of the vesicle size distribution and also multilamellarity of an appreciable fraction of untreated vesicles. Taken together, our findings clarify the influence of FT pretreatment on model membrane fabrication on solid supports.

12.
Proc Natl Acad Sci U S A ; 107(48): 20709-14, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21071674

RESUMO

Cell encapsulating poly(ethylene glycol) hydrogels represent a promising approach for constructing 3D cultures designed to more closely approximate in vivo tissue environment. Improved strategies are needed, however, to optimally balance hydrogel permeability to support metabolic activities of encapsulated cells, while maintaining patternability to restore key aspects of tissue architecture. Herein, we have developed one such strategy incorporating hydrophobic nanoparticles to partially induce looser cross-linking density at the particle-hydrogel interface. Strikingly, our network design significantly increased hydrogel permeability, while only minimally affecting the matrix mechanical strength or prepolymer viscosity. This structural advantage improved viability and functions of encapsulated cells and permitted micron-scale structures to control over spatial distribution of incorporated cells. We expect that this design strategy holds promise for the development of more advanced artificial tissues that can promote high levels of cell metabolic activity and recapitulate key architectural features.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hidrogéis/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Hepatócitos/citologia , Humanos , Ácido Láctico/farmacologia , Teste de Materiais , Peso Molecular , Fenótipo , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Padrões de Referência , Viscosidade/efeitos dos fármacos
13.
J Mater Sci Mater Med ; 24(4): 967-77, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354737

RESUMO

This study compared the effects of implanting two interpenetrating polymer networks (IPNs) into rabbit corneas. The first (Implant 1) was based on PEG-diacrylate, the second (Implant 2) was based on PEG-diacrylamide. There were inserted into deep stromal pockets created using a manual surgical technique for either 3 or 6 months. The implanted corneas were compared with normal and sham-operated corneas through slit lamp observation, anterior segment optical coherence tomography, in vivo confocal scanning and histological examination. Corneas with Implant 1 (based on PEG-diacrylate) developed diffuse haze, ulcers and opacities within 3 months, while corneas with Implant 2 (based on PEG-diacrylamide) remained clear at 6 months. They also exhibited normal numbers of epithelial cell layers, without any immune cell infiltration, inflammation, oedema or neovascularisation at post-operative 6 month. Morphological studies showed transient epithelial layer thinning over the hydrogel inserted area and elevated keratocyte activity at 3 months; however, the epithelium thickness and keratocyte morphology were improved at 6 months. Implant 2 exhibited superior in vivo biocompatibility and higher optical clarity than Implant 1. PEG-diacrylamide-based IPN hydrogel is therefore a potential candidate for corneal inlays to correct refractive error.


Assuntos
Materiais Biocompatíveis , Transplante de Córnea , Polietilenoglicóis/química , Animais , Topografia da Córnea , Coelhos , Tomografia de Coerência Óptica
14.
Adv Mater ; 35(14): e2209956, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656747

RESUMO

Encryption technologies are essential for information security and product anti-counterfeiting, but they are typically restricted to planar surfaces. Encryption on complex 3D objects offers great potential to further improve security. However, it is rarely achieved owing to the lack of encoding strategies for nonplanar surfaces. Here, an approach is reported to directly encrypt on a 3D-printed object employing orthogonal photochemistry. In this system, visible light photochemistry is used for 3D printing of a hydrogel, and ultraviolet light is subsequently employed to activate its geometrically complex surface through the dissociation of ortho-nitrobenzyl ester units in a spatioselective manner for information coding. This approach offers a new way for more reliable encryption, and the underlying orthogonal photochemistry can be extended toward functional modification of 3D-printed products beyond information protection.

15.
J Mater Chem B ; 11(34): 8159-8169, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37313622

RESUMO

Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.


Assuntos
Bicamadas Lipídicas , Células Neoplásicas Circulantes , Humanos , Bicamadas Lipídicas/química , Lipossomos , Separação Celular , Células Neoplásicas Circulantes/patologia , Microfluídica
16.
Langmuir ; 28(3): 1765-74, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22181558

RESUMO

The orientation of a monoclonal, anti-streptavidin human IgG1 antibody on a model hydrophobic, CH(3)-terminated surface (1-dodecanethiol self-assembled monolayer on gold) was studied by monitoring the mechanical coupling between the adsorbed layer and the surface as well as the binding of molecular probes to the antibodies. In this study, the streptavidin antigen was used as a probe for the Fab portions of the antibody, while bacteria-derived Protein G' was used as a probe for the Fc region. Bovine serum albumin (BSA) acted as a blocking protein. Monolayer coverage occurred around 468 ng/cm(2). Below 100 ng/cm(2), antibodies were found to adsorb flat-on, tightly coupled to the surface and unable to capture their antigen, whereas the Fc region was able to bind Protein G'. At half-monolayer coverage, there was a transition in the mechanism of adsorption to allow for vertically oriented antibodies, as evidenced by the binding of both Protein G' and streptavidin as well as looser mechanical coupling with the surface. Monolayer coverage was characterized by a reduced level in probe binding per antibody and an even less rigid coupling to the surface.


Assuntos
Anticorpos Monoclonais/química , Adsorção , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Ouro , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , Receptores Fc/química , Receptores Fc/imunologia , Soroalbumina Bovina/química , Estreptavidina/química , Estreptavidina/imunologia , Compostos de Sulfidrila/química , Propriedades de Superfície
17.
iScience ; 25(10): 105081, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36204272

RESUMO

Matching the treatment to an individual patient's tumor state can increase therapeutic efficacy and reduce tumor recurrence. Circulating tumor cells (CTCs) derived from solid tumors are promising subjects for theragnostic analysis. To analyze how CTCs represent tumor states, we established cell lines from CTCs, primary and metastatic tumors from a mouse model and provided phenotypic and multiomic analyses of these cells. CTCs and metastatic cells, but not primary tumor cells, shared stochastic mutations and similar hypomethylation levels at transcription start sites. CTCs and metastatic tumor cells shared a hybrid epithelial/mesenchymal transcriptome state with reduced adhesive and enhanced mobilization characteristics. We tested anti-cancer drugs on tumor cells from a metastatic breast cancer patient. CTC responses mirrored the impact of drugs on metastatic rather than primary tumors. Our multiomic and clinical anti-cancer drug response results reveal that CTCs resemble metastatic tumors and establish CTCs as an ex vivo tool for personalized medicine.

18.
Biochim Biophys Acta ; 1798(4): 719-29, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19766590

RESUMO

The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.


Assuntos
Géis/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Dióxido de Silício/química , Microdomínios da Membrana/química , Microdomínios da Membrana/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Modelos Moleculares , Simulação de Dinâmica Molecular
19.
Langmuir ; 27(7): 3739-48, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21366275

RESUMO

Supported lipid platforms are versatile cell membrane mimics whose structural properties can be tailored to suit the application of interest. By identifying parameters that control the self-assembly of these platforms, there is potential to develop advanced biomimetic systems that overcome the surface specificity of lipid vesicle interactions under physiological conditions. In this work, we investigated the adsorption kinetics of vesicles onto silicon and titanium oxides as a function of pH. On each substrate, a planar bilayer and a layer of intact vesicles could be self-assembled in a pH-dependent manner, demonstrating the role of surface charge density in the self-assembly process. Under acidic pH conditions where both zwitterionic lipid vesicles and the oxide films possess near-neutral electric surface charges, vesicle rupture could occur, demonstrating that the process is driven by nonelectrostatic interactions. However, we observed that the initial rupturing process is insufficient for propagating bilayer formation. The role of electrostatic interactions for propagating bilayer formation differs for the two substrates; electrostatic attraction between vesicles and the substrate is necessary for complete bilayer formation on titanium oxide but is not necessary on silicon oxide. Conversely, in the high pH regime, repulsive electrostatic interactions can result in the irreversible adsorption of intact vesicles on silicon oxide and even a reversibly adsorbed vesicle layer on titanium oxide. Together, the results show that pH is an effective tool to modulate vesicle-substrate interactions in order to create various self-assembled lipid platforms on hydrophilic substrates.


Assuntos
Lipídeos/química , Dióxido de Silício/química , Titânio/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Eletricidade Estática , Propriedades de Superfície
20.
Langmuir ; 27(1): 250-63, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21128607

RESUMO

An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this hypothesis, BSA substrates were chemically modified to reduce the magnitude of the negative charge at pH 8. Chemical modification was accomplished by the amidation of aspartic and glutamic acids to asparagine and glutamine. The ionic strength response of the chemically modified substrate was considerably different than that for the native BSA substrate at an identical pH, consistent with the trend based on substrate surface charge. Consequently, for substrates with a low net surface charge, the maximum achievable catalytic rate of the charge ladder was relatively independent of the solution ionic strength over the range examined; however, at high net substrate surface charge, the maximum rate showed a considerable ionic strength dependence.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Adsorção , Animais , Bovinos , Cellulomonas/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Concentração Osmolar , Conformação Proteica , Serina Proteases/química , Serina Proteases/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA