RESUMO
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Assuntos
Quirópteros , Humanos , Animais , GadoRESUMO
Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature's most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropical Anolis lizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.
Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Ilhas , Lagartos/classificação , Animais , Lagartos/fisiologia , FilogeniaRESUMO
Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns.
Assuntos
Lagartos/anatomia & histologia , Seleção Genética/fisiologia , Animais , Biodiversidade , Evolução Biológica , Clima , Mudança Climática/estatística & dados numéricos , Tempestades Ciclônicas/estatística & dados numéricos , Desastres/estatística & dados numéricos , Ecossistema , Ilhas , Filogenia , Filogeografia , Dinâmica Populacional/estatística & dados numéricos , Dedos do Pé/anatomia & histologiaRESUMO
The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals, and its potential to threaten conservation and public health. To assess this threat, we reviewed published evidence of human-to-wildlife transmission events, with a focus on how such events could threaten animal and human health. We identified 97 verified examples, involving a wide range of pathogens; however, reported hosts were mostly non-human primates or large, long-lived captive animals. Relatively few documented examples resulted in morbidity and mortality, and very few led to maintenance of a human pathogen in a new reservoir or subsequent "secondary spillover" back into humans. We discuss limitations in the literature surrounding these phenomena, including strong evidence of sampling bias towards non-human primates and human-proximate mammals and the possibility of systematic bias against reporting human parasites in wildlife, both of which limit our ability to assess the risk of human-to-wildlife pathogen transmission. We outline how researchers can collect experimental and observational evidence that will expand our capacity for risk assessment for human-to-wildlife pathogen transmission.
Assuntos
Animais Selvagens , COVID-19 , Animais , Humanos , Mamíferos , Pandemias , Primatas , Saúde Pública , SARS-CoV-2RESUMO
Pandemics originating from non-human animals highlight the need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection and/or potential reservoirs to mitigate public health and conservation concerns. Multiple zoonotic coronaviruses, such as severe acute respiratory syndrome-associated coronavirus (SARS-CoV), SARS-CoV-2 and Middle Eastern respiratory syndrome-associated coronavirus (MERS-CoV), are hypothesized to have evolved in bats. We investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2, and dipeptidyl-peptidase 4 (DPP4 or CD26), the host protein bound by MERS-CoV, in the largest bat datasets to date. Both the ACE2 and DPP4 genes are under strong selection pressure in bats, more so than in other mammals, and in residues that contact viruses. Additionally, mammalian groups vary in their similarity to humans in residues that contact SARS-CoV, SARS-CoV-2 and MERS-CoV, and increased similarity to humans in binding residues is broadly predictive of susceptibility to SARS-CoV-2. This work augments our understanding of the relationship between coronaviruses and mammals, particularly bats, provides taxonomically diverse data for studies of how host proteins are bound by coronaviruses and can inform surveillance, conservation and public health efforts.
Assuntos
Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Receptores de Coronavírus , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Quirópteros/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/metabolismoRESUMO
If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.
Assuntos
Biodiversidade , Quirópteros , Filogenia , Animais , Conservação dos Recursos Naturais , Costa Rica , Ecossistema , HumanosRESUMO
Bats have been observed to shift the frequency of their echolocation calls in the presence of other echolocating bats, ostensibly as a way to reduce acoustic interference. Few studies, however, have examined the theoretical efficacy of such jamming avoidance responses. The present study uses the wideband ambiguity function to analyze the effects of acoustic interference from conspecifics and congeneric heterospecifics on the target acquisition ability of Myotis californicus and Myotis yumanensis, specifically whether unilateral or bilateral frequency shifts reduce the effects of such interference. Model results suggest that in conspecific interactions, M. yumanensis recovers its target acquisition ability more completely and with less absolute frequency shift than does M. californicus, but that alternative methods of jamming avoidance may be easier to implement. The optimal strategy for reducing heterospecific interference is for M. californicus to downshift its call and M. yumanensis to upshift its call, which exaggerates a preexisting difference in mean frequency between the calls of the two species. Further empirical research would elucidate whether these species do in practice actively employ frequency shifting or other means for jamming avoidance, as well as illuminate the role of acoustic interference in niche partitioning.
Assuntos
Percepção Auditiva , Quirópteros/psicologia , Ecolocação , Vocalização Animal , Estimulação Acústica , Acústica , Animais , Limiar Auditivo , Quirópteros/classificação , Ecolocação/classificação , Voo Animal , Percepção da Altura Sonora , Espectrografia do Som , Fatores de Tempo , Vocalização Animal/classificaçãoRESUMO
Leukocyte profiles are broadly used to assess the health status of many species. Reference intervals, and an understanding of the factors that may influence these intervals, are necessary for adequate interpretation of leukograms. Using a data set that spans over three decades, we investigated variation in leukocyte profile in several populations of the evolutionarily unique reptile, the tuatara (Sphenodon punctatus). To do this, we first established reference intervals for each leukocyte type according to best practices. Next, we determined that source population and sampling date were the two most important predictors of leukocyte makeup. We found significant differences in the ratio of heterophils: lymphocytes (H:L) between populations, with tuatara on the more resource-stressed sampling island having a significantly higher ratio of H:L. Finally, we found that sampling location, sex, and life stage did not explain variation in the responses of tuatara to stimulation with Concanavalin A and lipopolysaccharide in both 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide and Griess assay experiments. Our results offer important insight into the function of leukocytes in reptiles.
Assuntos
Leucócitos , Répteis , AnimaisRESUMO
The genetic locus encoding immunoglobulin heavy chains (IgH) is critical for vertebrate humoral immune responses and diverse antibody repertoires. Immunoglobulin and T cell receptor loci of most bat species have not been annotated, despite the recurrent role of bats as viral reservoirs and sources of zoonotic pathogens. We investigated the genetic structure and function of IgH loci across the largest bat family, Vespertilionidae, focusing on big brown bats (Eptesicus fuscus ). We discovered that E. fuscus and ten other species within Vespertilionidae have two complete, functional, and distinct immunoglobulin heavy chain loci on separate chromosomes. This locus organization is previously unknown in mammals, but is reminiscent of more limited duplicated loci in teleost fish. Single cell transcriptomic data validate functional rearrangement and expression of immunoglobulin heavy chains of both loci in the expressed repertoire of Eptesicus fuscus , with maintenance of allelic exclusion, bias of usage toward the smaller and more compact IgH locus, and evidence of differential selection of antigen-experienced B cells and plasma cells varying by IgH locus use. This represents a unique mechanism for mammalian humoral immunity and may contribute to bat resistance to viral pathogenesis.
RESUMO
Introduction: Field work with bats is an important contribution to many areas of research in environmental biology and ecology, as well as microbiology. Work with bats poses hazards such as bites and scratches, and the potential for exposure to infectious pathogens such as rabies virus. It also exposes researchers to many other potential hazards inherent to field work, such as environmental conditions, delayed emergency responses, or challenging work conditions. Methods: This article discusses the considerations for a thorough risk assessment process around field work with bats, pre- and post-occupational health considerations, and delves into specific considerations for areas related to biosafety concerns-training, personal protective equipment, safety consideration in field methods, decontamination, and waste. It also touches on related legal and ethical issues that sit outside the realm of biosafety, but which must be addressed during the planning process. Discussion: Although the focal point of this article is bat field work located in northern and central America, the principles and practices discussed here are applicable to bat work elsewhere, as well as to field work with other animal species, and should promote careful considerations of how to safely conduct field work to protect both researchers and animals.
RESUMO
Data that catalogue viral diversity on Earth have been fragmented across sources, disciplines, formats, and various degrees of open sharing, posing challenges for research on macroecology, evolution, and public health. Here, we solve this problem by establishing a dynamically maintained database of vertebrate-virus associations, called The Global Virome in One Network (VIRION). The VIRION database has been assembled through both reconciliation of static data sets and integration of dynamically updated databases. These data sources are all harmonized against one taxonomic backbone, including metadata on host and virus taxonomic validity and higher classification; additional metadata on sampling methodology and evidence strength are also available in a harmonized format. In total, the VIRION database is the largest open-source, open-access database of its kind, with roughly half a million unique records that include 9,521 resolved virus "species" (of which 1,661 are ICTV ratified), 3,692 resolved vertebrate host species, and 23,147 unique interactions between taxonomically valid organisms. Together, these data cover roughly a quarter of mammal diversity, a 10th of bird diversity, and â¼6% of the estimated total diversity of vertebrates, and a much larger proportion of their virome than any previous database. We show how these data can be used to test hypotheses about microbiology, ecology, and evolution and make suggestions for best practices that address the unique mix of evidence that coexists in these data. IMPORTANCE Animals and their viruses are connected by a sprawling, tangled network of species interactions. Data on the host-virus network are available from several sources, which use different naming conventions and often report metadata in different levels of detail. VIRION is a new database that combines several of these existing data sources, reconciles taxonomy to a single consistent backbone, and reports metadata in a format designed by and for virologists. Researchers can use VIRION to easily answer questions like "Can any fish viruses infect humans?" or "Which bats host coronaviruses?" or to build more advanced predictive models, making it an unprecedented step toward a full inventory of the global virome.
Assuntos
Quirópteros , Vírus , Animais , Vírus de DNA , Vírion , Viroma , Vírus/genéticaRESUMO
Pandemics originating from pathogen transmission between animals and humans highlight the broader need to understand how natural hosts have evolved in response to emerging human pathogens and which groups may be susceptible to infection. Here, we investigate angiotensin-converting enzyme 2 (ACE2), the host protein bound by SARS-CoV and SARS-CoV-2. We find that the ACE2 gene is under strong selection pressure in bats, the group in which the progenitors of SARS-CoV and SARS-CoV-2 are hypothesized to have evolved, particularly in residues that contact SARS-CoV and SARS-CoV-2. We detect positive selection in non-bat mammals in ACE2 but in a smaller proportion of branches than in bats, without enrichment of selection in residues that contact SARS-CoV or SARS-CoV-2. Additionally, we evaluate similarity between humans and other species in residues that contact SARS-CoV or SARS-CoV-2, revealing potential susceptible species but also highlighting the difficulties of predicting spillover events. This work increases our understanding of the relationship between mammals, particularly bats, and coronaviruses, and provides data that can be used in functional studies of how host proteins are bound by SARS-CoV and SARS-CoV-2 strains.
RESUMO
As humans move and alter habitats, they change the disease risk for themselves, their commensal animals and wildlife. Bartonella bacteria are prevalent in mammals and cause numerous human infections. Understanding how this genus has evolved and switched hosts in the past can reveal how current patterns were established and identify potential mechanisms for future cross-species transmission. We analyzed patterns of Bartonella transmission and likely sources of spillover using the largest collection of Bartonella gltA genotypes assembled, including 67 new genotypes. This pathogenic genus likely originated as an environmental bacterium and insect commensal before infecting mammals. Rodents and domestic animals serve as the reservoirs or at least key proximate host for most Bartonella genotypes in humans. We also find evidence of exchange of Bartonella between phylogenetically distant domestic animals and wildlife, likely due to increased contact. Care should be taken to avoid contact between humans, domestic animals and wildlife to protect the health of all.
Assuntos
Bartonella/isolamento & purificação , Reservatórios de Doenças/microbiologia , Mamíferos/microbiologia , Animais , Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Bartonella/classificação , Bartonella/genética , Mamíferos/classificação , Filogenia , Roedores/microbiologiaRESUMO
Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.
Assuntos
Evolução Biológica , Quirópteros/fisiologia , Dieta , Microbioma Gastrointestinal , Genoma , Animais , Sangue , Quirópteros/genética , Quirópteros/microbiologia , FilogeniaRESUMO
While anthropogenic impacts on parasitism of wildlife are receiving growing attention, whether these impacts vary in a sex-specific manner remains little explored. Differences between the sexes in the effect of parasites, linked to anthropogenic activity, could lead to uneven sex ratios and higher population endangerment. We sampled 1108 individual bats in 18 different sites across an agricultural mosaic landscape in southern Costa Rica to investigate the relationships between anthropogenic impacts (deforestation and reductions in host species richness) and bat fly ectoparasitism of 35 species of Neotropical bats. Although female and male bat assemblages were similar across the deforestation gradient, bat fly assemblages tracked their hosts closely only on female bats. We found that in female hosts, parasite abundance per bat decreased with increasing bat species richness, while in male hosts, parasite abundance increased. We hypothesize the differences in the parasite-disturbance relationship are due to differences in roosting behavior between the sexes. We report a sex-specific parasite-disturbance relationship and argue that sex differences in anthropogenic impacts on wildlife parasitism could impact long-term population health and survival.