Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Soft Matter ; 18(10): 2060-2071, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199113

RESUMO

Plants, animals, and humans use camouflage to blend in with their surroundings. The camouflage is achieved with different combinations of colors, patterns, and morphologies. In stealth applications, the simplest camouflage uses textiles colored similarly to the environment to create an illusion. However, often, visible light range camouflage is not enough since the multispectral detection technologies of today are readily utilized for identification. Foams can be created with a straightforward fabricating process, and lightweight material exhibits good thermal insulation properties, providing stealth in the infrared light region. Herein, we produce cellulosic wet foams from surfactant and bleached pulp or cellulose nanofibrils. The visible light camouflage is created with green microalgae, Chlorella vulgaris, and brown kraft lignin, which also stabilized the foams. The thermal and spectral camouflage performance of foams was influenced by the cellulose content as well as the stability and water content of foams. Overall, these results give insight into how stability impacts the thermal and spectral properties of wet foams and provide a solid base for further material development to improve camouflage performance. While there is plenty of data on dry foams, the functional behavior of wet foams is currently not well known. Our method, using plant-based components can be exploited in a variety of other applications where simplicity and scalability are important.


Assuntos
Chlorella vulgaris , Microalgas , Celulose , Lignina
2.
Macromol Rapid Commun ; 41(2): e1900522, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778287

RESUMO

Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol-ene micropillars are fabricated. Omnidirectional collective bending of the pillar array in magnetic field is shown. Local non-contact actuation of a single pillar is achieved using an electromagnetic needle to probe the responsiveness and the elastic properties of the pillars by comparing the effect of thiol-ene crosslinking density to pillar bending. The suitable thiol-ene components for flexible and stiff magnetic micropillars and the workable range of thiol-to-allyl ratio are identified. The wettability of the magnetic pillars can be tailored by chemical and topography modification of the pillar surface. Low-surface-energy self-assembled monolayers are grafted by UV-assisted surface activation, which is also used for surface topography modification by covalent bonding of micro- and nanoparticles to the pillar surface. The modified thiol-ene micopillars are resistant to capillarity-driven collapse and they exhibit low contact angle hysteresis, allowing water droplet motion driven by repeated bending and recovery of the magnetic pillars in an external magnetic field. Transport of polyethylene microspheres is also demonstrated.


Assuntos
Compostos Alílicos/química , Química Click , Nanopartículas de Magnetita/química , Compostos de Sulfidrila/química , Elasticidade , Campos Eletromagnéticos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propilenoglicóis/química , Sulfetos/síntese química , Sulfetos/química , Propriedades de Superfície , Triazinas/química , Água/química , Molhabilidade
3.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815888

RESUMO

Reliable characterization of wetting properties is essential for the development and optimization of superhydrophobic surfaces. Here, the dynamics of superhydrophobicity is studied including droplet friction and wetting transitions by using droplet oscillations on micropillared surfaces. Analyzing droplet oscillations by high-speed camera makes it possible to obtain energy dissipation parameters such as contact angle hysteresis force and viscous damping coefficients, which indicate pinning and viscous losses, respectively. It is shown that the dissipative forces increase with increasing solid fraction and magnetic force. For 10 µm diameter pillars, the solid fraction range within which droplet oscillations are possible is between 0.97% and 2.18%. Beyond the upper limit, the oscillations become heavily damped due to high friction force. Below the lower limit, the droplet is no longer supported by the pillar tops and undergoes a Cassie-Wenzel transition. This transition is found to occur at lower pressure for a moving droplet than for a static droplet. The findings can help to optimize micropillared surfaces for low-friction droplet transport.

4.
Chemistry ; 23(66): 16835-16842, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28902425

RESUMO

Microreactors attract a significant interest for chemical synthesis due to the benefits of small scales such as high surface to volume ratio, rapid thermal ramping, and well-understood laminar flows. The suitability of atomic layer deposition for application of both the nanoparticle catalyst and the support material on the surfaces of channels of microfabricated silicon microreactors is demonstrated in this research. Continuous-flow hydrogenation of propene into propane at low temperatures with TiO2 -supported catalytic Pt nanoparticles was used as a model reaction. Reaction yield and mass transport were monitored by high-sensitivity microcoil NMR spectroscopy as well as time-of-flight remote detection NMR imaging. The microreactors were shown to be very efficient in propene conversion into propane. The yield of 100 % was achieved at 50 °C with a reactor decorated with Pt nanoparticles of average size of roughly 1 nm and surface coverage of 3.2 % in 20 mm long reaction channels with a residence time of 1100 ms. The activity of the Pt catalyst surfaces was on the order of several to tens of mmol s-1 m-2 .

5.
Electrophoresis ; 36(3): 428-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25043750

RESUMO

We report a simple protocol for fabrication of shape-anchored porous polymer monoliths (PPMs) for on-chip SPE prior to online microchip electrophoresis (ME) separation and on-chip (ESI/MS). The chip design comprises a standard ME separation channel with simple cross injector and a fully integrated ESI emitter featuring coaxial sheath liquid channel. The monolith zone was prepared in situ at the injection cross by laser-initiated photopolymerization through the microchip cover layer. The use of high-power laser allowed not only maskless patterning of a precisely defined monolith zone, but also faster exposure time (here, 7 min) compared with flood exposure UV lamps. The size of the monolith pattern was defined by the diameter of the laser output (∅500 µm) and the porosity was geared toward high through-flow to allow electrokinetic actuation and thus avoid coupling to external pumps. Placing the monolith at the injection cross enabled firm anchoring based on its cross-shape so that no surface premodification with anchoring linkers was needed. In addition, sample loading and subsequent injection (elution) to the separation channel could be performed similar to standard ME setup. As a result, 15- to 23-fold enrichment factors were obtained already at loading (preconcentration) times as short as 25 s without sacrificing the throughput of ME analysis. The performance of the SPE-ME-ESI/MS chip was repeatable within 3.1% and 11.5% RSD (n = 3) in terms of migration time and peak height, respectively, and linear correlation was observed between the loading time and peak area.


Assuntos
Eletroforese em Microchip/instrumentação , Polímeros/química , Extração em Fase Sólida/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Eletroforese em Microchip/métodos , Desenho de Equipamento , Interações Hidrofóbicas e Hidrofílicas , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/isolamento & purificação , Porosidade , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
Proc Natl Acad Sci U S A ; 109(26): 10210-3, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689952

RESUMO

Nature offers exciting examples for functional wetting properties based on superhydrophobicity, such as the self-cleaning surfaces on plant leaves and trapped air on immersed insect surfaces allowing underwater breathing. They inspire biomimetic approaches in science and technology. Superhydrophobicity relies on the Cassie wetting state where air is trapped within the surface topography. Pressure can trigger an irreversible transition from the Cassie state to the Wenzel state with no trapped air--this transition is usually detrimental for nonwetting functionality and is to be avoided. Here we present a new type of reversible, localized and instantaneous transition between two Cassie wetting states, enabled by two-level (dual-scale) topography of a superhydrophobic surface, that allows writing, erasing, rewriting and storing of optically displayed information in plastrons related to different length scales.

7.
Nanotechnology ; 25(35): 355701, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25116235

RESUMO

Graphene has attracted attention as a potential strengthening material and functional component in suspended membranes as utilized in micro and nanosystems. Development of a practical and scalable fabrication process is a necessary step to allow the exceptional material properties of graphene to be fully exploited in composite structures. Using standard and scalable microfabrication processes, we fabricated free-standing chemical vapor deposition monolayer graphene-reinforced Al2O3 composite membranes, 0.5 mm in diameter, that are strong and robust. Bulge tests revealed that the graphene reinforcement increased the membrane fracture strength by a factor of at least three and maximum sustainable strain from 0.28% to at least 0.69%. We show that the graphene-reinforced membranes are even tolerant to significant cracking without loss of membrane integrity. The graphene composite membranes' freestanding area of ∼ 200 000 µm(2) is almost a thousand times larger than suspended graphene membranes reported elsewhere. The presented graphene composite membranes may be seen as representing an interesting new class of durable composite materials warranting further study and having potential for broad applicability in a variety of fields.

8.
Angew Chem Int Ed Engl ; 53(42): 11289-93, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25169921

RESUMO

The development of microfluidic processes requires information-rich detection methods. Here we introduce the concept of remote detection exchange NMR spectroscopy (RD-EXSY), and show that, along with indirect spatial information extracted from time-of-flight data, it provides unique information about the active regions, reaction pathways, and intermediate products in a lab-on-a-chip reactor. Furthermore, we demonstrate that direct spatial resolution can be added to RD-EXSY efficiently by applying the principles of Hadamard spectroscopy.

9.
Adv Healthc Mater ; 13(18): e2303872, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837670

RESUMO

Brain-on-Chip devices, which facilitate on-chip cultures of neurons to simulate brain functions, are receiving tremendous attention from both fundamental and clinical research. Consequently, microsensors are being developed to accomplish real-time monitoring of neurotransmitters, which are the benchmarks for neuron network operation. Among these, electrochemical sensors have emerged as promising candidates for detecting a critical neurotransmitter, dopamine. However, current state-of-the-art electrochemical dopamine sensors are suffering from issues like limited sensitivity and cumbersome fabrication. Here, a novel route in monolithically microfabricating vertically aligned carbon nanofiber electrochemical dopamine microsensors is reported with an anti-blistering slow cooling process. Thanks to the microfabrication process, microsensors is created with complete insulation and large surface areas. The champion device shows extremely high sensitivity of 4.52× 104 µAµM-1·cm-2, which is two-orders-of-magnitude higher than current devices, and a highly competitive limit of detection of 0.243 nM. These remarkable figures-of-merit will open new windows for applications such as electrochemical recording from a single neuron.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Nanofibras , Dopamina/análise , Nanofibras/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
10.
J Nanobiotechnology ; 11: 11, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575365

RESUMO

The interface between engineering and molecular life sciences has been fertile ground for advancing our understanding of complex biological systems. Engineered microstructures offer a diverse toolbox for cellular and molecular biologists to direct the placement of cells and small organisms, and to recreate biological functions in vitro: cells can be positioned and connected in a designed fashion, and connectivity and community effects of cells studied. Because of the highly polar morphology and finely compartmentalized functions of neurons, microfabricated cell culture systems and related on-chip technologies have become an important enabling platform for studying development, function and degeneration of the nervous system at the molecular and cellular level. Here we review some of the compartmentalization techniques developed so far to highlight how high-precision control of neuronal connectivity allows new approaches for studying axonal and synaptic biology.


Assuntos
Microtecnologia/métodos , Nanotecnologia/métodos , Neurobiologia , Animais , Axônios/metabolismo , Caenorhabditis elegans , Drosophila melanogaster , Microfluídica/métodos , Modelos Animais , Neurônios/citologia , Neurônios/fisiologia
11.
Mass Spectrom Rev ; 29(3): 351-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19514079

RESUMO

Microfabrication of analytical devices is currently of growing interest and many microfabricated instruments have also entered the field of mass spectrometry (MS). Various (atmospheric pressure) ion sources as well as mass analyzers have been developed exploiting microfabrication techniques. The most common approach thus far has been the miniaturization of the electrospray ion source and its integration with various separation and sampling units. Other ionization techniques, mainly atmospheric pressure chemical ionization and photoionization, have also been subject to miniaturization, though they have not attracted as much attention. Likewise, all common types of mass analyzers have been realized by microfabrication and, in most cases, successfully applied to MS analysis in conjunction with on-chip ionization. This review summarizes the latest achievements in the field of microfabricated ion sources and mass analyzers. Representative applications are reviewed focusing on the development of fully microfabricated systems where ion sources or analyzers are integrated with microfluidic separation devices or microfabricated pums and detectors, respectively. Also the main microfabrication methods, with their possibilities and constraints, are briefly discussed together with the most commonly used materials.


Assuntos
Espectrometria de Massas/instrumentação , Espectrometria de Massas/tendências , Microcomputadores/tendências , Vidro , Nanotecnologia , Polímeros , Silício , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
12.
Langmuir ; 27(11): 7314-20, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21548567

RESUMO

Geometric pinning sites can be used to control the lateral spreading and pinning of oils on surfaces. The geometric pinning effect combined with lithographic surface chemistry patterning allows controlling the shapes of oil droplets. We study the confinement effect on test structures of various protruding and intruding geometries, and employ scanning electron microscopy analysis to study the shape of the meniscus at the edges of the chemical patterns. Nanopillar and micropillar topographies are compared, revealing that it is a necessity for accurate oil patterns that the length scale of the roughness is smaller than the resolution of the surface chemistry pattern. We also find that there exists a critical, geometry-dependent threshold contact angle, below which the geometric confinement does not work, as olive oil with a static advancing contact angle of 57° accurately replicated the chemical pattern on top of nanopillar topography, but hexadecane with a static advancing contact angle of 50° penetrated the pinning sites and wetted the whole surface.


Assuntos
Óleos/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Tensão Superficial
13.
Nanotechnology ; 22(6): 065303, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21212490

RESUMO

A novel non-lithographic technique for the fabrication of carbon nanotube thin film transistors is presented. The whole transistor fabrication process requires only one mask which is used both to pattern transistor channels based on aerosol synthesized carbon nanotubes and to deposit electrodes by metal evaporation at different angles. An important effect of electrodynamic focusing was utilized for the directed assembly of transistor channels with feature sizes smaller than the mask openings. This dry non-lithographic method opens up new avenues for device fabrication especially for low cost flexible and transparent electronics.

14.
J Nanosci Nanotechnol ; 11(10): 8818-25, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400265

RESUMO

Ultra-thin (2-5 nm thick) aluminum oxide layers were grown on non-functionalized individual single walled carbon nanotubes (SWCNT) and their bundles by atomic layer deposition (ALD) technique in order to investigate the mechanism of the coating process. Transmission electron microscopy (TEM) was used to examine the uniformity and conformality of the coatings grown at different temperatures (80 degrees C or 220 degrees C) and with different precursors for oxidation (water and ozone). We found that bundles of SWCNTs were coated continuously, but at the same time, bare individual nanotubes remained uncoated. The successful coating of bundles was explained by the formation of interstitial pores between the individual SWCNTs constituting the bundle, where the precursor molecules can adhere, initiating the layer growth. Thicker alumina layers (20-35 nm thick) were used for the coating of bottom-gated SWCNT-network based field effect transistors (FETs). ALD layers, grown at different conditions, were found to influence the performance of the SWCNT-network FETs: low temperature ALD layers caused the ambipolarity of the channel and pronounced n-type conduction, whereas high temperature ALD processes resulted in hysteresis suppression in the transfer characteristics of the SWCNT transistors and preserved p-type conduction. Fixed charges in the ALD layer have been considered as the main factor influencing the conduction change of the SWCNT network based transistors.

15.
Sci Rep ; 11(1): 12646, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135443

RESUMO

A polydimethylsiloxane (PDMS)/Cu superhydrophobic composite material is fabricated by wet etching, electroless plating, and polymer casting. The surface topography of the material emerges from hierarchical micro/nanoscale structures of etched aluminum, which are rigorously copied by plated copper. The resulting material is superhydrophobic (contact angle > 170°, sliding angle < 7° with 7 µL droplets), electrically conductive, elastic and wear resistant. The mechanical durability of both the superhydrophobicity and the metallic conductivity are the key advantages of this material. The material is robust against mechanical abrasion (1000 cycles): the contact angles were only marginally lowered, the sliding angles remained below 10°, and the material retained its superhydrophobicity. The resistivity varied from 0.7 × 10-5 Ωm (virgin) to 5 × 10-5 Ωm (1000 abrasion cycles) and 30 × 10-5 Ωm (3000 abrasion cycles). The material also underwent 10,000 cycles of stretching and bending, which led to only minor changes in superhydrophobicity and the resistivity remained below 90 × 10-5 Ωm.

16.
Lab Chip ; 10(13): 1689-95, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20386863

RESUMO

This study presents a new, simple, and low-cost technique to fabricate a nanocluster silicon (NCSi) surface on planar silicon using a micro-scale direct current (DC) discharge under ambient conditions. The method requires no masks, chemicals, vacuum environment, or laser, but only a high-voltage supply. The NCSi surfaces, characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy, consist of oxidized silicon nanoclusters 50-200 nm in diameter, likely formed by melting due to high temperatures in the discharge. The minimum size of the NCSi spot is determined by the size of the discharge tip (approximately 90 microm). Arbitrary NCSi areas can be produced on a silicon wafer by moving the discharge needle on the surface with the help of a computer-controlled xyz stage. NCSi surfaces can also be formed on three-dimensional (3D) surfaces, as demonstrated with silicon micropillars. NCSi surfaces can be used, for example, in various analytical applications. In this study, we demonstrate their use as sample plates in the analysis of drugs and peptides with desorption/ionization on silicon-mass spectrometry (DIOS-MS).


Assuntos
Eletrônica/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Silício/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Nanoestruturas/ultraestrutura , Propriedades de Superfície
17.
Anal Chem ; 82(9): 3874-82, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20394408

RESUMO

A new, commercial hybrid ceramic polymer, Ormocomp, was introduced to the fabrication of microfluidic separation chips using two independent techniques, UV lithography and UV embossing. Both fabrication methods provided Ormocomp chips with stable cathodic electroosmotic flow which enabled examination of the Ormocomp biocompatibility by means of microchip capillary electrophoresis (MCE) and (intrinsic) fluorescence detection. The hydrophobic/hydrophilic properties of Ormocomp were examined by screening its interactions with bovine serum albumin and selected amino acids of varying hydrophobicity. The results show that the ceramic, organic-inorganic polymer structure natively resists biofouling on microchannel walls even so that the Ormocomp microchips can be used in intact protein analysis without prior surface modification. With theoretical separation plates approaching 10(4) m(-1) for intact proteins and 10(6) m(-1) for amino acids and peptides, our results suggest that Ormocomp microchips hold record-breaking performance as microfluidic separation platforms. In addition, Ormocomp was shown to be suitable for optical fluorescence detection even at near-UV range (ex 355 nm) with detection limits at a nanomolar level ( approximately 200 nM) for selected inherently fluorescent pharmaceuticals.


Assuntos
Cerâmica/química , Teste de Materiais , Microfluídica , Polímeros/química , Albumina Sérica/química , Animais , Incrustação Biológica , Bovinos
18.
Electrophoresis ; 31(15): 2566-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20603829

RESUMO

In this work, PEG-stabilized phosphatidylcholine lipid aggregates (disks), mimicking mammalian cell membranes, were introduced as a new biofouling resistant coating for SU-8 polymer microchannels. A rapid and simple method was developed for immobilization of PEGylated phosphatidylcholine disks in microchannels. Microfluidic chips made from SU-8, PDMS, or glass were dynamically coated with the PEGylated disks followed by characterization of their surface chemistry before and after coating. On the basis of the observed changes in EOF and nonspecific protein adsorption, the affinity of the PEGylated disks was shown to be particularly strong toward SU-8. The PEG-lipid coating enabled permanent change in EOF in SU-8 microchannels with an initial value of 4.5 x 10(-8) m(2) V(-1) s(-1), decreasing to 2.1 x 10(-8) m(2) V(-1) s(-1) (immediately after modification), and, eventually, to 1.5 x 10(-8) m(2) V(-1) s(-1) (7 days after modification) for 9 mM sodium borate (pH 10.5) as BGE. As determined by the Wilhelmy plate measurements and microchip-CE analysis of BSA, the PEG-lipid coating also enabled efficient biofouling shield against protein adsorption, similar to that of low amounts of SDS (3.5 mM) or Tween-20 (80 microM) as buffer additives. These results suggest that dynamically attached PEG-lipid aggregates provide stable, biomimicking surface modification that efficiently reduces biofouling on SU-8.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Fosfatidilcolinas/química , Polietilenoglicóis/química , Adsorção , Animais , Bovinos , Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Vidro/química , Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Soroalbumina Bovina/isolamento & purificação , Propriedades de Superfície , Tensoativos/química
19.
Electrophoresis ; 31(22): 3745-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21077242

RESUMO

Monolithically integrated, polymer (SU-8) microchips comprising an electrophoretic separation unit, a sheath flow interface and an ESI emitter were developed to improve the speed and throughput of proteomics analyses. Validation of the microchip method was performed based on peptide mass fingerprinting and single peptide sequencing of selected protein standards. Rapid, yet reliable identification of four biologically important proteins (cytochrome C, ß-lactoglobulin, ovalbumin and BSA) confirmed the applicability of the SU-8 microchips to ambitious proteomic applications and allowed their use in the analysis of human muscle cell lysates. The characteristic tryptic peptides were easily separated with plate numbers approaching 10(6), and with peak widths at half height as low as 0.6 s. The on-chip sheath flow interface was also exploited to the introduction of an internal mass calibrant along with the sheath liquid which enabled accurate mass measurements by high-resolution Q-TOF MS. Additionally, peptide structural characterization and protein identification based on MS/MS fragmentation data of a single tryptic peptide was obtained using an ion trap instrument. Protein sequence coverages exceeding 50% were routinely obtained without any pretreatment of the proteolytic samples and a typical total analysis time from sampling to detection was well below ten minutes. In conclusion, monolithically integrated, dead-volume-free, SU-8 microchips proved to be a promising platform for fast and reliable analysis of complex proteomic samples. Good analytical performance of the microchips was shown by performing both peptide mass fingerprinting of complex cell lysates and protein identification based on single peptide sequencing.


Assuntos
Extratos Celulares/química , Eletroforese em Microchip/métodos , Compostos de Epóxi/química , Fragmentos de Peptídeos/análise , Polímeros/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Bovinos , Galinhas , Humanos , Células Musculares/química , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Proteínas/metabolismo , Reprodutibilidade dos Testes , Tripsina/metabolismo
20.
Rapid Commun Mass Spectrom ; 24(17): 2584-90, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20740534

RESUMO

An ionspray microchip is introduced. The chip is based on the earlier presented nebulizer microchip that consists of glass and silicon plates bonded together. A liquid inlet channel, nebulizer gas inlet, and nozzle are etched on the silicon plate and a platinum heater is integrated on the glass plate. The nebulizer microchip has been previously used in atmospheric pressure chemical ionization, atmospheric pressure photoionization, sonic spray ionization, and thermospray ionization modes. In this work we show that the microchip can be operated also in ionspray mode by introducing high voltage to the silicon plate of the microchip. The effects of operation parameters (voltage, nebulizer gas pressure, sample solution flow rate, solvent composition, and analyte concentration) on the performance of the ion spray microchip were studied. Under optimized conditions the microchip provides efficient ionization of small and large compounds and good quantitative performance. The feasibility of the ion spray microchip in liquid chromatography/mass spectrometry (LC/MS) was demonstrated by the analysis of tryptic peptides of bovine serum albumin.


Assuntos
Dispositivos Lab-On-A-Chip , Fragmentos de Peptídeos/química , Preparações Farmacêuticas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Animais , Bradicinina/química , Bovinos , Procedimentos Analíticos em Microchip/métodos , Nebulizadores e Vaporizadores , Fragmentos de Peptídeos/metabolismo , Platina/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Processamento de Sinais Assistido por Computador , Silício/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Testosterona/química , Tripsina/metabolismo , Verapamil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA