Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7961): 629-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138085

RESUMO

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Assuntos
Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Água/química , Água/metabolismo , Manganês/química , Manganês/metabolismo , Cálcio/química , Cálcio/metabolismo , Peróxidos/metabolismo
3.
Nature ; 563(7731): 421-425, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405241

RESUMO

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Assuntos
Oxigênio/metabolismo , Fotossíntese , Água/química , Água/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Cianobactérias/química , Lasers , Manganês/metabolismo , Modelos Moleculares , Oxirredução , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo
4.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884399

RESUMO

We investigate the performance of time-dependent density functional theory (TDDFT) for reproducing high-level reference x-ray absorption spectra of liquid water and water clusters. For this, we apply the integrated absolute difference (IAD) metric, previously used for x-ray emission spectra of liquid water [T. Fransson and L. G. M. Pettersson, J. Chem. Theory Comput. 19, 7333-7342 (2023)], in order to investigate which exchange-correlation (xc) functionals yield TDDFT spectra in best agreement to reference, as well as to investigate the suitability of IAD for x-ray absorption spectroscopy spectrum calculations. Considering highly asymmetric and symmetric six-molecule clusters, it is seen that long-range corrected xc-functionals are required to yield good agreement with the reference coupled cluster (CC) and algebraic-diagrammatic construction spectra, with 100% asymptotic Hartree-Fock exchange resulting in the lowest IADs. The xc-functionals with best agreement to reference have been adopted for larger water clusters, yielding results in line with recently published CC theory, but which still show some discrepancies in the relative intensity of the features compared to experiment.

5.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38013689

RESUMO

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

6.
J Chem Phys ; 158(8): 084105, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859074

RESUMO

We present an implementation for the calculation of molecular response properties using the algebraic-diagrammatic construction (ADC)/intermediate state representation approach. For the second-order ADC model [ADC(2)], a memory-efficient ansatz avoiding the storage of double excitation amplitudes is investigated. We compare the performance of different numerical algorithms for the solution of the underlying response equations for ADC(2) and show that our approach also strongly improves the convergence behavior for the investigated algorithms compared with the standard implementation. All routines are implemented in an open-source Python library.

7.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434915

RESUMO

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Hidrogênio/metabolismo , Magnésio/metabolismo , Oxirredução , Oxigênio/metabolismo , Fótons , Complexo de Proteína do Fotossistema II/química , Quinonas/metabolismo , Água/metabolismo
8.
Phys Chem Chem Phys ; 24(18): 11259-11267, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481477

RESUMO

For the calculation of core-ionization energies (IEs), X-ray photoelectron spectra (XPS), and X-ray emission spectra (XES), a commonly applied approach is to use non-Aufbau reference states with a core-hole as either final (IE and XPS) or initial (XES) state. However, such reference states can introduce numerical instabilities in post-HF methods, relating to the denominator of the energy corrections involved. This may become arbitrarily close to zero if a negative virtual orbital is present, e.g. a core-hole, leading to near-singularities. The resulting instabilities lead to severe convergence issues of the calculation schemes and, in addition, can strongly affect both energies and intensities, with oscillator strengths seen to reach values up to 4 × 107. For the K-edge we propose freezing the highest-energy virtual orbitals which contribute to any denominator below a threshold of 0.1 Hartree. Stable and reliable spectra are then produced, with minimal influence due to freezing energetically high-lying virtual orbitals (typically removing <5% of the total number of MOs). The developed protocol is here tested for Møller-Plesset perturbation theory and for the algebraic diagrammatic construction scheme for the polarization propagator, and it is also relevant for coupled cluster theory and other related methods.

9.
Nature ; 540(7633): 453-457, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27871088

RESUMO

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O-O bond formation and O2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.


Assuntos
Cianobactérias/química , Elétrons , Lasers , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura , Amônia/química , Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Manganês/metabolismo , Modelos Moleculares , Oxigênio/metabolismo , Especificidade por Substrato , Água/metabolismo
10.
J Chem Phys ; 156(21): 214109, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676123

RESUMO

The influence of core-hole delocalization for x-ray photoelectron, x-ray absorption, and x-ray emission spectrum calculations is investigated in detail using approaches including response theory, transition-potential methods, and ground state schemes. The question of a localized/delocalized vacancy is relevant for systems with symmetrically equivalent atoms, as well as near-degeneracies that can distribute the core orbitals over several atoms. We show that the issues relating to core-hole delocalization are present for calculations considering explicit core-hole states, e.g., when using a core-excited or core-ionized reference state or for fractional occupation numbers. As electron correlation eventually alleviates the issues, but even when using coupled-cluster single-double and perturbative triple, there is a notable discrepancy between core-ionization energies obtained with localized and delocalized core-holes (0.5 eV for the carbon K-edge). Within density functional theory, the discrepancy correlates with the exchange interaction involving the core orbitals of the same spin symmetry as the delocalized core-hole. The use of a localized core-hole allows for a reasonably good inclusion of relaxation at a lower level of theory, whereas the proper symmetry solution involving a delocalized core-hole requires higher levels of theory to account for the correlation effects involved in orbital relaxation. For linear response methods, we further show that if x-ray absorption spectra are modeled by considering symmetry-unique sets of atoms, care has to be taken such that there are no delocalizations of the core orbitals, which would otherwise introduce shifts in absolute energies and relative features.

11.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32683863

RESUMO

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Assuntos
Oxigenases/química , Temperatura , Methylosinus trichosporium/enzimologia , Modelos Moleculares , Oxirredução , Oxigenases/metabolismo , Solubilidade , Raios X
12.
Nat Methods ; 14(4): 443-449, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250468

RESUMO

X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.


Assuntos
Cristalografia por Raios X/métodos , Lasers , Acústica , Complexo de Proteína do Fotossistema II/química , Fitocromo/química , Ribonucleotídeo Redutases/química , Espectrometria por Raios X/métodos
13.
J Chem Phys ; 153(5): 054114, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770930

RESUMO

For the calculation of core-excited states probed through X-ray absorption spectroscopy, the core-valence separation (CVS) scheme has become a vital tool. This approach allows us to target such states with high specificity, albeit introducing an error. We report the implementation of a post-processing step for CVS excitations obtained within the algebraic-diagrammatic construction scheme for the polarization propagator, which removes this error. Based on this, we provide a detailed analysis of the CVS scheme, identifying its accuracy to be dominated by an error balance between two neglected couplings, one between core and valence single excitations and the other between single and double core excitations. The selection of the basis set is shown to be vital for a proper description of both couplings, with tight polarizing functions being necessary for a good balance of errors. The CVS error is confirmed to be stable across multiple systems, with an element-specific spread for K-edge spectrum calculations of only about ±0.02 eV. A systematic lowering of the CVS error by 0.02 eV-0.03 eV is noted when considering excitations to extremely diffuse states, emulating ionization.

14.
J Chem Phys ; 153(7): 074112, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828100

RESUMO

We present the derivation and implementation of complex, frequency-dependent polarizabilities for excited states using the algebraic-diagrammatic construction for the polarization propagator (ADC) and its intermediate state representation. Based on the complex polarizability, we evaluate C6 dispersion coefficients for excited states. The methodology is implemented up to third order in perturbation theory in the Python-driven adcc toolkit for the development and application of ADC methods. We exemplify the approach using illustrative model systems and compare it to results from other ab initio methods and from experiments.

15.
J Synchrotron Radiat ; 26(Pt 5): 1716-1724, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490163

RESUMO

This work has demonstrated that X-ray absorption spectroscopy (XAS), both Mn XANES and EXAFS, of solutions with millimolar concentrations of metal is possible using the femtosecond X-ray pulses from XFELs. Mn XAS data were collected using two different sample delivery methods, a Rayleigh jet and a drop-on-demand setup, with varying concentrations of Mn. Here, a new method for normalization of XAS spectra based on solvent scattering that is compatible with data collection from a highly variable pulsed source is described. The measured XANES and EXAFS spectra of such dilute solution samples are in good agreement with data collected at synchrotron sources using traditional scanning protocols. The procedures described here will enable XFEL-based XAS on dilute biological samples, especially metalloproteins, with low sample consumption. Details of the experimental setup and data analysis methods used in this XANES and EXAFS study are presented. This method will also benefit XAS performed at high-repetition-rate XFELs such as the European XFEL, LCLS-II and LCLS-II-HE.

16.
Biochemistry ; 57(31): 4629-4637, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29906115

RESUMO

Serial femtosecond crystallography (SFX) using the ultrashort X-ray pulses from a X-ray free-electron laser (XFEL) provides a new way of collecting structural data at room temperature that allows for following the reaction in real time after initiation. XFEL experiments are conducted in a shot-by-shot mode as the sample is destroyed and replenished after each X-ray pulse, and therefore, monitoring and controlling the data quality by using in situ diagnostic tools is critical. To study metalloenzymes, we developed the use of simultaneous collection of X-ray diffraction of crystals along with X-ray emission spectroscopy (XES) data that is used as a diagnostic tool for crystallography, by monitoring the chemical state of the metal catalytic center. We have optimized data analysis methods and sample delivery techniques for fast and active feedback to ensure the quality of each batch of samples and the turnover of the catalytic reaction caused by reaction triggering methods. Here, we describe this active in situ feedback system using Photosystem II as an example that catalyzes the oxidation of H2O to O2 at the Mn4CaO5 active site. We used the first moments of the Mn Kß1,3 emission spectra, which are sensitive to the oxidation state of Mn, as the primary diagnostics. This approach is applicable to different metalloproteins to determine the integrity of samples and follow changes in the chemical states of the reaction that can be initiated by light or activated by substrates and offers a metric for determining the diffraction images that are used for the final data sets.


Assuntos
Cristalografia por Raios X/métodos , Metaloproteínas/química , Espectrometria por Raios X/métodos , Catálise , Lasers , Manganês/metabolismo , Metaloproteínas/metabolismo , Oxigênio/metabolismo , Temperatura , Água/metabolismo
17.
Phys Rev Lett ; 120(13): 133203, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694162

RESUMO

We report the observation and analysis of the gain curve of amplified Kα x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ∼1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ∼1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ∼10^{20} W/cm^{2} for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

18.
Chem Rev ; 116(13): 7551-69, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27244473

RESUMO

Here we present an overview of recent developments of X-ray and electron spectroscopy to probe water at different temperatures. Photon-induced ionization followed by detection of electrons from either the O 1s level or the valence band is the basis of photoelectron spectroscopy. Excitation between the O 1s and the unoccupied states or occupied states is utilized in X-ray absorption and X-ray emission spectroscopies. These techniques probe the electronic structure of the liquid phase and show sensitivity to the local hydrogen-bonding structure. Both experimental aspects related to the measurements and theoretical simulations to assist in the interpretation are discussed in detail. Different model systems are presented such as the different bulk phases of ice and various adsorbed monolayer structures on metal surfaces.

19.
J Chem Phys ; 148(14): 144507, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655333

RESUMO

The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

20.
Phys Chem Chem Phys ; 18(19): 13591-603, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136720

RESUMO

X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA