Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 44(1): 85-96, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21981920

RESUMO

Faithful transmission of genomic information requires tight spatiotemporal regulation of DNA replication factors. In the licensing step of DNA replication, CDT-1 is loaded onto chromatin to subsequently promote the recruitment of additional replication factors, including CDC-45 and GINS. During the elongation step, the CDC-45/GINS complex moves with the replication fork; however, it is largely unknown how its chromatin association is regulated. Here, we show that the chaperone-like ATPase CDC-48/p97 coordinates degradation of CDT-1 with release of the CDC-45/GINS complex. C. elegans embryos lacking CDC-48 or its cofactors UFD-1/NPL-4 accumulate CDT-1 on mitotic chromatin, indicating a critical role of CDC-48 in CDT-1 turnover. Strikingly, CDC-48(UFD-1/NPL-4)-deficient embryos show persistent chromatin association of CDC-45/GINS, which is a consequence of CDT-1 stabilization. Moreover, our data confirmed a similar regulation in Xenopus egg extracts, emphasizing a conserved coordination of licensing and elongation events during eukaryotic DNA replication by CDC-48/p97.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Ligases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Caenorhabditis elegans , Masculino , Mitose , Interferência de RNA , Espermatozoides/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química , Ubiquitina/metabolismo , Proteína com Valosina , Xenopus laevis
2.
Biochim Biophys Acta ; 1843(1): 205-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23583830

RESUMO

The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.


Assuntos
Adenosina Trifosfatases/fisiologia , Envelhecimento/genética , Proteínas de Ciclo Celular/fisiologia , Crescimento e Desenvolvimento/genética , Animais , Proliferação de Células , Humanos , Estabilidade Proteica , Deficiências na Proteostase/genética , Reprodução/fisiologia , Proteína com Valosina
3.
Dev Biol ; 338(2): 136-47, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19962374

RESUMO

The function of epithelial tissues is dependent on their polarised architecture, and loss of cell polarity is a hallmark of various diseases. Here we analyse cell polarisation in the follicular epithelium of Drosophila, an epithelium that arises by a mesenchymal-epithelial transition. Although many epithelia are formed by mesenchymal precursors, it is unclear how they polarise. Here we show how lateral, apical, and adherens junction proteins act stepwise to establish polarity in the follicular epithelium. Polarisation starts with the formation of adherens junctions, whose positioning is controlled by combined activities of Par-3, beta-catenin, and Discs large. Subsequently, Par-6 and aPKC localise to the apical membrane in a Par-3-dependent manner. Apical membrane specification continues by the accumulation of the Crumbs complex, which is controlled by Par-3, Par-6, and aPKC. Thus, our data elucidate the genetic mechanisms leading to the stepwise polarisation of an epithelium with a mesenchymal origin.


Assuntos
Polaridade Celular , Drosophila/citologia , Células Epiteliais/citologia , Junções Intercelulares/química , Junções Aderentes/química , Animais , Proteínas de Drosophila/fisiologia , Células Epiteliais/ultraestrutura , Epitélio , Mesoderma/citologia
4.
Cell Death Differ ; 28(2): 505-521, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398091

RESUMO

Perturbation of metabolism elicits cellular stress which profoundly modulates the cellular proteome and thus protein homeostasis (proteostasis). Consequently, changes in the cellular proteome due to metabolic shift require adaptive mechanisms by molecular protein quality control. The mechanisms vitally controlling proteostasis embrace the entire life cycle of a protein involving translational control at the ribosome, chaperone-assisted native folding, and subcellular sorting as well as proteolysis by the proteasome or autophagy. While metabolic imbalance and proteostasis decline have been recognized as hallmarks of aging and age-associated diseases, both processes are largely considered independently. Here, we delineate how proteome stability is governed by insulin/IGF1 signaling (IIS), mechanistic target of Rapamycin (TOR), 5' adenosine monophosphate-activated protein kinase (AMPK), and NAD-dependent deacetylases (Sir2-like proteins known as sirtuins). This comprehensive overview is emphasizing the regulatory interconnection between central metabolic pathways and proteostasis, indicating the relevance of shared signaling nodes as targets for future therapeutic interventions.


Assuntos
Envelhecimento , Proteostase/fisiologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Dobramento de Proteína , Proteólise , Proteoma , Ubiquitinação
5.
Cell Rep ; 37(2): 109819, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644576

RESUMO

The AAA+ ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals. The role of VCP in chromatin is defined by its cofactor FAF1, which facilitates the extraction of SUMOylated and ubiquitylated proteins that accumulate after the block of DNA replication in the absence of USP7. The inactivation of USP7 and FAF1 is synthetically lethal both in C. elegans and mammalian cells. In addition, USP7 and VCP inhibitors display synergistic toxicity supporting a functional link between deubiquitylation and extraction of chromatin-bound proteins. Our results suggest that USP7 and VCPFAF1 facilitate DNA replication by controlling the balance of SUMO/Ubiquitin-modified DNA replication factors on chromatin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cromatina/metabolismo , Replicação do DNA , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação , Proteína com Valosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Proteínas Reguladoras de Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Evolução Molecular , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Sumoilação , Peptidase 7 Específica de Ubiquitina/genética , Proteína com Valosina/genética
6.
Trends Endocrinol Metab ; 29(8): 525-527, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605660

RESUMO

Labbadia et al. showed that low-dose mitochondrial stress promotes protein homeostasis in the cytosol to endure proteotoxic conditions, particularly during aging. This hormetic mitochondrial stress response is heat shock factor 1 (HSF1)-dependent and, remarkably, does not affect physiological parameters that are usually associated with pathogenic disturbance of mitochondrial function.


Assuntos
Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico , Mitocôndrias , Proteostase
7.
J Chromatogr A ; 1163(1-2): 177-89, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17612549

RESUMO

A systematic study was made to explain the large improvements in separation performance and capacity of basic compounds at alkaline conditions. The adsorption of three probe components was investigated on four alkaline-stable silica-based C18 columns at three different pH-levels: 3, 7 and 11. The probes were 3-phenyl-1-propanol (neutral), 2-phenylbutyric acid (acidic) and metoprolol (basic). Adsorption isotherms were acquired over a broad concentration range, in order to detect both high and low energy sites. Before the choice of the proper adsorption isotherm model, the adsorption energy distribution (AED) was calculated yielding the number of different kinds of interaction sites between the solute and the stationary phase. The neutral probe was entirely unaffected by pH and its AED was unimodal (one site) indicating homogenous adsorption. For the acidic probe the interactions were unimodal at pH 3 where the probe is uncharged and at least bimodal (two sites) at pH 7 and 11 where the probe is charged. For the basic probe, the interactions were heterogeneous at both pH 3 and 11. The equilibrium constants of the high and low energy sites were different by a factor of 55-100 at pH 3 and only 6-7 at pH 11. The difference in saturation capacities between the two sites was much smaller at pH 11 where 20% of the total capacity is from the high energy site, as compared to pH 3 where the high energy site was only 2-5% of the total capacity. This explains why peaks of amines (basic solutes) tail at low pH while their peaks are symmetrical at alkaline pH. The Langmuir model fit the unimodal data and the bi-Langmuir model fit the bimodal AED data. The calculated band profiles based on these parameters agreed excellently with the experimental data. The electrostatic-modified Langmuir, on the other hand, did not describe this adsorption process well.


Assuntos
Álcalis/química , Cromatografia Líquida/métodos , Dióxido de Silício/química , Termodinâmica , Adsorção , Cromatografia Líquida/instrumentação , Concentração de Íons de Hidrogênio , Metoprolol/química , Fenilbutiratos/química , Propanóis/química
9.
Front Genet ; 7: 73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200082

RESUMO

The dynamic composition of proteins associated with nuclear DNA is a fundamental property of chromosome biology. In the chromatin compartment dedicated protein complexes govern the accurate synthesis and repair of the genomic information and define the state of DNA compaction in vital cellular processes such as chromosome segregation or transcription. Unscheduled or faulty association of protein complexes with DNA has detrimental consequences on genome integrity. Consequently, the association of protein complexes with DNA is remarkably dynamic and can respond rapidly to cellular signaling events, which requires tight spatiotemporal control. In this context, the ring-like AAA+ ATPase CDC48/p97 emerges as a key regulator of protein complexes that are marked with ubiquitin or SUMO. Mechanistically, CDC48/p97 functions as a segregase facilitating the extraction of substrate proteins from the chromatin. As such, CDC48/p97 drives molecular reactions either by directed disassembly or rearrangement of chromatin-bound protein complexes. The importance of this mechanism is reflected by human pathologies linked to p97 mutations, including neurodegenerative disorders, oncogenesis, and premature aging. This review focuses on the recent insights into molecular mechanisms that determine CDC48/p97 function in the chromatin environment, which is particularly relevant for cancer and aging research.

10.
Nat Commun ; 7: 10612, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842564

RESUMO

The coordinated activity of DNA replication factors is a highly dynamic process that involves ubiquitin-dependent regulation. In this context, the ubiquitin-directed ATPase CDC-48/p97 recently emerged as a key regulator of chromatin-associated degradation in several of the DNA metabolic pathways that assure genome integrity. However, the spatiotemporal control of distinct CDC-48/p97 substrates in the chromatin environment remained unclear. Here, we report that progression of the DNA replication fork is coordinated by UBXN-3/FAF1. UBXN-3/FAF1 binds to the licensing factor CDT-1 and additional ubiquitylated proteins, thus promoting CDC-48/p97-dependent turnover and disassembly of DNA replication factor complexes. Consequently, inactivation of UBXN-3/FAF1 stabilizes CDT-1 and CDC-45/GINS on chromatin, causing severe defects in replication fork dynamics accompanied by pronounced replication stress and eventually resulting in genome instability. Our work identifies a critical substrate selection module of CDC-48/p97 required for chromatin-associated protein degradation in both Caenorhabditis elegans and humans, which is relevant to oncogenesis and aging.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Replicação do DNA/genética , Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Embrião não Mamífero , Células HEK293 , Humanos , Imunoprecipitação , Microscopia , Imagem com Lapso de Tempo , Proteína com Valosina
11.
Curr Opin Cell Biol ; 37: 18-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26343990

RESUMO

Mitochondria provide an essential role in the maintenance of cellular homeostasis with regard to energy generation, redox signaling, and programmed cell death. Consequently, fast adaptation to metabolic changes associated with developmental demands or stress induction requires a balanced coordination of mitochondrial biogenesis and removal of damaged mitochondria. Impaired mitochondrial maintenance is causally linked to many human pathologies and aging, including diabetes, cancer, and neurodegenerative diseases. Thus, it is of fundamental importance to understand cellular surveillance mechanisms that support a healthy mitochondrial network. In this review, we discuss the role of ubiquitin-dependent protein degradation in mitochondrial functionality.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Apoptose , Homeostase , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA