Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioconjug Chem ; 34(12): 2275-2292, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37882455

RESUMO

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Indicadores e Reagentes , Quelantes , Ácido Nitrilotriacético/química , Caderinas/química , Metais
2.
Bioconjug Chem ; 33(9): 1620-1633, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35857350

RESUMO

In this work, we report the use of bioorthogonal chemistry, specifically the strain-promoted click azide-alkyne cycloaddition (SPAAC) for the covalent attachment of magnetic nanoparticles (MNPs) on living cell membranes. Four types of MNPs were prepared, functionalized with two different stabilizing/passivation agents (a polyethylene glycol derivative and a glucopyranoside derivative, respectively) and two types of strained alkynes with different reactivities: a cyclooctyne (CO) derivative and a dibenzocyclooctyne (DBCO) derivative. The MNPs were extensively characterized in terms of physicochemical characteristics, colloidal stability, and click reactivity in suspension. Then, the reactivity of the MNPs toward azide-modified surfaces was evaluated as a closer approach to their final application in a living cell scenario. Finally, the DBCO-modified MNPs, showing superior reactivity in suspension and on surfaces, were selected for cell membrane immobilization via the SPAAC reaction on the membranes of cells engineered to express azide artificial reporters. Overall, our work provides useful insights into the appropriate surface engineering of nanoparticles to ensure a high performance in terms of bioorthogonal reactivity for biological applications.


Assuntos
Azidas , Nanopartículas de Magnetita , Alcinos/química , Azidas/química , Membrana Celular , Química Click , Reação de Cicloadição , Polietilenoglicóis/química
3.
Anal Bioanal Chem ; 408(7): 1783-803, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26282487

RESUMO

In this critical review we discuss the most recent advances in the field of biosensing applications of magnetic glyconanoparticles. We first give an overview of the main synthetic routes to obtain magnetic-nanoparticle-carbohydrate conjugates and then we highlight their most promising applications for magnetic relaxation switching sensing, cell and pathogen detection, cell targeting and magnetic resonance imaging. We end with a critical perspective of the field, identifying the main challenges to be overcome, but also the areas where the most promising developments are likely to happen in the coming decades.


Assuntos
Técnicas Biossensoriais/métodos , Carboidratos/química , Imageamento por Ressonância Magnética/métodos , Imãs/química , Nanopartículas/química , Nanotecnologia/métodos , Animais , Carboidratos/síntese química , Separação Celular/métodos , Rastreamento de Células/métodos , Técnicas de Química Sintética/métodos , Humanos , Magnetismo/métodos
4.
Anal Chem ; 87(20): 10547-55, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26383715

RESUMO

Conventional methods to determine the kinetic parameters for a certain reaction require multiple, separate isothermal experiments, resulting in time- and material-consuming processes. Here, an approach to determine the kinetic information within a single nonisothermal on-flow experiment is presented, consuming less than 10 µmol of reagents and having a total measuring time of typically 10 min. This approach makes use of a microfluidic NMR chip hyphenated to a continuous-flow microreactor and is based on the capabilities of the NMR chip to analyze subnanomole quantities of material in the 25 nL detection volume. Importantly, useful data are acquired from the microreactor platform in specific isothermal and nonisothermal frames. A model fitting the experimental data enables rapid determination of kinetic parameters, as demonstrated for a library of isoxazole and pyrazole derivatives.

5.
Langmuir ; 30(50): 15057-71, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24911468

RESUMO

The field of nanotechnology applied to medicine (nanomedicine) is developing at a fast pace and is expected to provide solutions for early diagnosis, targeted therapy, and personalized medicine. However, designing nanomaterials for biomedical applications is not a trivial task. Avoidance of the immune system, stability in physiological media, control over the interaction of a nanomaterial with biological entities such as proteins and cell membranes, low toxicity, and optimal bioperformance are critical for the success of the designed nanomaterial. In this Feature Article we provide a concise overview of some of the most recent advances concerning the derivatization of gold and iron oxide nanoparticles for bioapplications. The most important aspects relating to the functionalization of gold and iron oxide nanoparticles with carbohydrates, peptides, nucleic acids, and antibodies are covered, highlighting the recent contributions from our research group. We suggest tips for the appropriate (bio)functionalization of these inorganic nanoparticles in order to preserve the biological activity of the attached biomolecules and ensure their subsequent stability in physiological media.


Assuntos
Biopolímeros/química , Compostos Férricos/química , Ouro/química , Nanopartículas/química , Nanotecnologia/métodos , Animais , Humanos , Peso Molecular
6.
ACS Appl Bio Mater ; 5(5): 1879-1889, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35179873

RESUMO

The simultaneous detection and quantification of several iron-containing species in biological matrices is a challenging issue. Especially in the frame of studies using magnetic nanoparticles for biomedical applications, no gold-standard technique has been described yet and combinations of different techniques are generally used. In this work, AC magnetic susceptibility measurements are used to analyze different organs from an animal model that received a single intratumor administration of magnetic nanoparticles. The protocol used for the quantification of iron associated with the magnetic nanoparticles is carefully described, including the description of the preparation of several calibration standard samples of nanoparticle suspensions with different degrees of dipolar interactions. The details for the quantitative analysis of other endogenous iron-containing species such as ferritin or hemoglobin are also described. Among the advantages of this technique are that tissue sample preparation is minimal and that large amounts of tissue can be characterized each time (up to hundreds of milligrams). In addition, the very high specificity of the magnetic measurements allows for tracking of the nanoparticle transformations. Furthermore, the high sensitivity of the instrumentation results in very low limits of detection for some of the iron-containing species. Therefore, the presented technique is an extremely valuable tool to track iron oxide magnetic nanoparticles in samples of biological origin.


Assuntos
Ferritinas , Nanopartículas de Magnetita , Animais , Ferro/metabolismo , Fenômenos Magnéticos , Magnetismo , Nanopartículas de Magnetita/análise
7.
Nanoscale ; 14(6): 2091-2118, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35103278

RESUMO

During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years.


Assuntos
Campos Magnéticos , Magnetismo , Eletricidade , Neurônios , Optogenética
8.
Nanoscale Adv ; 3(5): 1261-1292, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132873

RESUMO

Bioorthogonal chemistry comprises chemical reactions that can take place inside complex biological environments, providing outstanding tools for the investigation and elucidation of biological processes. Its use in combination with nanotechnology can lead to further developments in diverse areas of biomedicine, such as molecular bioimaging, targeted delivery, in situ drug activation, study of cell-nanomaterial interactions, biosensing, etc. Here, we summarise the recent efforts to bring together the unique properties of nanoparticles and the remarkable features of bioorthogonal reactions to create a toolbox of new or improved biomedical applications. We show how, by joining forces, bioorthogonal chemistry and nanotechnology can overcome some of the key current limitations in the field of nanomedicine, providing better, faster and more sensitive nanoparticle-based bioimaging and biosensing techniques, as well as therapeutic nanoplatforms with superior efficacy.

9.
Beilstein J Nanotechnol ; 12: 665-679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327112

RESUMO

The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.

10.
ACS Appl Mater Interfaces ; 13(11): 12982-12996, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33709682

RESUMO

Magnetic hyperthermia (MH) was used to treat a murine model of pancreatic cancer. This type of cancer is generally characterized by the presence of dense stroma that acts as a barrier for chemotherapeutic treatments. Several alternating magnetic field (AMF) conditions were evaluated using three-dimensional (3D) cell culture models loaded with magnetic nanoparticles (MNPs) to determine which conditions were producing a strong effect on the cell viability. Once the optimal AMF conditions were selected, in vivo experiments were carried out using similar frequency and field amplitude parameters. A marker of the immune response activation, calreticulin (CALR), was evaluated in cells from a xenograft tumor model after the MH treatment. Moreover, the distribution of nanoparticles within the tumor tissue was assessed by histological analysis of tumor sections, observing that the exposure to the alternating magnetic field resulted in the migration of particles toward the inner parts of the tumor. Finally, a relationship between an inadequate body biodistribution of the particles after their intratumoral injection and a significant decrease in the effectiveness of the MH treatment was found. Animals in which most of the particles remained in the tumor area after injection showed higher reductions in the tumor volume growth in comparison with those animals in which part of the particles were found also in the liver and spleen. Therefore, our results point out several factors that should be considered to improve the treatment effectiveness of pancreatic cancer by magnetic hyperthermia.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias Pancreáticas/terapia , Animais , Linhagem Celular Tumoral , Humanos , Imunidade , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Masculino , Camundongos Nus , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia
11.
ACS Nano ; 15(1): 434-446, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33306343

RESUMO

Lipids are a major source of energy for most tissues, and lipid uptake and storage is therefore crucial for energy homeostasis. So far, quantification of lipid uptake in vivo has primarily relied on radioactive isotope labeling, exposing human subjects or experimental animals to ionizing radiation. Here, we describe the quantification of in vivo uptake of chylomicrons, the primary carriers of dietary lipids, in metabolically active tissues using magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS). We show that loading artificial chylomicrons (ACM) with iron oxide nanoparticles (IONPs) enables rapid and highly sensitive post hoc detection of lipid uptake in situ using MPS. Importantly, by utilizing highly magnetic Zn-doped iron oxide nanoparticles (ZnMNPs), we generated ACM with MPI tracer properties superseding the current gold-standard, Resovist, enabling quantification of lipid uptake from whole-animal scans. We focused on brown adipose tissue (BAT), which dissipates heat and can consume a large part of nutrient lipids, as a model for tightly regulated and inducible lipid uptake. High BAT activity in humans correlates with leanness and improved cardiometabolic health. However, the lack of nonradioactive imaging techniques is an important hurdle for the development of BAT-centered therapies for metabolic diseases such as obesity and type 2 diabetes. Comparison of MPI measurements with iron quantification by inductively coupled plasma mass spectrometry revealed that MPI rivals the performance of this highly sensitive technique. Our results represent radioactivity-free quantification of lipid uptake in metabolically active tissues such as BAT.


Assuntos
Diabetes Mellitus Tipo 2 , Tecido Adiposo Marrom , Animais , Diagnóstico por Imagem , Humanos , Lipoproteínas , Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Análise Espectral
12.
Colloids Surf B Biointerfaces ; 196: 111315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32818926

RESUMO

Isolated iron oxide magnetic nanoparticles (MNPs), 12 nm in diameter, coated with oleic acid molecules as capping agents have been deposited by the Langmuir-Blodgett (LB) method onto a model cell membrane incorporating 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Cholesterol (Chol) in the 1:1 ratio, which was also fabricated by the LB technique. Atomic Force Microscopy (AFM) experiments showed that the application of an alternating magnetic field results in the embedding of the MNPs through the phospholipidic layer. These experimental results reveal that the heating of individual MNPs may induce a local increase in the fluidity of the film with a large control of the spatial and temporal specificity.


Assuntos
Calefação , Magnetismo , Membrana Celular , Fenômenos Magnéticos , Microscopia de Força Atômica
13.
ACS Appl Mater Interfaces ; 12(39): 43474-43487, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32870658

RESUMO

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.


Assuntos
Apoptose/efeitos dos fármacos , Hipertermia Induzida , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Cinética , Campos Magnéticos , Camundongos , Método de Monte Carlo , Tamanho da Partícula , Células RAW 264.7 , Propriedades de Superfície
14.
J Org Chem ; 74(17): 6691-702, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19642693

RESUMO

Mechanistic details of the Mg(2+) ion-activated enantioselective reduction of methyl benzoylformate have been investigated at a B3LYP/6-31G* theory level, using peptide NADH models 1 rigidified with a beta-lactam ring. Computation of the reaction pathway revealed important structural differences between the intermediate NADH/Mg(2+)/ArCOCO(2)R ternary complexes 3 and the corresponding transition states leading to enantiomeric methyl mandelates. Thus, ternary complexes showed the dihydronicotinamide moiety placed quasiequatorial to a seven-membered chelation pseudoplane including the two amide carbonyls and the Mg(2+) cation, whereas productive transition states were strongly deformed with the dihydronicotinamide group oriented quasiaxial to the chelation pseudoplane. This chelation model was further applied to acyclic nonrigidified NADH models and, based on the fluxional mobility of the peptide chain bonds, experimental enantioselectivities were correctly predicted. Parallel experiments were also conducted in deuterated acetonitrile, using NMR techniques, to study the structure of the binary complexes 2 (NADH/Mg(2+)) and ternary complexes 3 (NADH/Mg(2+)/PhCOCO(2)Me). Finally, owing to the incorporation of two diastereotopic trimethylsilyl NMR-tags in the beta-lactam-NADH peptidomimetics, a nonproductive ternary complex predicted by calculations could be observed and its structure characterized on the basis of ROESY experiments and molecular modeling.


Assuntos
Química Orgânica/métodos , Glioxilatos/química , Íons , Magnésio/química , Ácidos Mandélicos/química , NAD/química , beta-Lactamas/química , Cátions , Quelantes/farmacologia , Conformação Molecular , Estrutura Molecular , Niacinamida/química , Peptídeos/química , Estereoisomerismo
15.
Adv Drug Deliv Rev ; 138: 326-343, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339825

RESUMO

Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications). The potential of magnetic hyperthermia to promote in situ expression of therapeutic genes using vectors that contain heat-responsive promoters is also reviewed in the context of cancer gene therapy.


Assuntos
Antineoplásicos/química , Regulação Neoplásica da Expressão Gênica , Hipertermia Induzida , Neoplasias/genética , Neoplasias/terapia , Animais , Liberação Controlada de Fármacos , Humanos , Campos Magnéticos , Temperatura
16.
ACS Appl Mater Interfaces ; 10(51): 44301-44313, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30480993

RESUMO

Magnetic hyperthermia is a promising therapy for the localized treatment of cancer based on the exposure of magnetic nanoparticles to an external alternating magnetic field. In order to evaluate some of the mechanisms involved in the cellular damage caused by this treatment, two different 3D cell culture models were prepared using collagen, which is the most abundant protein of the extracellular matrix. The same amount of nanoparticles was added to cells either before or after their incorporation into the 3D structure. Therefore, in one model, particles were located only inside cells (In model), while the other one had particles both inside and outside cells (In&Out model). In the In&Out model, the hyperthermia treatment facilitated the migration of the particles from the outer areas of the 3D structure to the inner parts, achieving a faster homogeneous distribution throughout the whole structure and allowing the particles to gain access to the inner cells. The cell death mechanism activated by the magnetic hyperthermia treatment was different in both models. Necrosis was observed in the In model and apoptosis in the In&Out model 24 h after the hyperthermia application. This was clearly correlated with the amount of nanoparticles located inside the cells. Thus, the combination of both 3D models allowed us to demonstrate two different roles of the magnetic particles during the hyperthermia treatment: (i) The modulation of the cell death mechanism depending on the amount of intracellular particles and (ii) the disruption of the collagen matrix caused by the extracellular nanoparticles.


Assuntos
Técnicas de Cultura de Células , Matriz Extracelular , Hipertermia Induzida , Nanopartículas de Magnetita , Modelos Biológicos , Neoplasias , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia
17.
Colloids Surf B Biointerfaces ; 165: 315-324, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29501962

RESUMO

To improve the selectivity of magnetic nanoparticles for tumor treatment by hyperthermia, Fe3O4 nanoparticles have been functionalized with a peptide of the type arginine-glycine-aspartate (RGD) following a "click" chemistry approach. The RGD peptide was linked onto the previously coated nanoparticles in order to target αvß3 integrin receptors over-expressed in angiogenic cancer cells. Different coatings have been analyzed to enhance the biocompatibility of magnetic nanoparticles. Monodispersed and homogeneous magnetite nanoparticles have been synthesized by the seed growth method and have been characterized using X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, transmission electron microscopy and magnetic measurements. The magnetic hyperthermia efficiency of the nanoparticles has also been investigated and cytotoxicity assays have been perfomed for functionalized nanoparticles.


Assuntos
Biomarcadores Tumorais/metabolismo , Óxido Ferroso-Férrico/química , Hipertermia Induzida , Integrina alfaVbeta3/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Oligopeptídeos/química , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Expressão Gênica , Humanos , Integrina alfaVbeta3/genética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Ligação Proteica , Células Vero
18.
ACS Appl Mater Interfaces ; 10(5): 4548-4560, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29328627

RESUMO

The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro.


Assuntos
Nanopartículas , Compostos Férricos , Coroa de Proteína , Distribuição Tecidual
19.
Org Lett ; 9(1): 101-4, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17192095

RESUMO

[reaction: see text] Ring opening of alpha-substituted-alpha-methoxycarbonyl-N-nosylaziridines provides a practical access to enantiopure alpha,alpha'-disubstituted beta-lactam scaffolds, novel types of ditopic reverse turn surrogates. The procedure is general, short, and high yielding and starts from handy alpha-substituted serinates and alpha-amino acid derivatives.


Assuntos
Materiais Biomiméticos/síntese química , Peptídeos/química , beta-Lactamas/química , Aziridinas/química , Materiais Biomiméticos/química , Estrutura Molecular , beta-Lactamas/síntese química
20.
Talanta ; 167: 51-58, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340752

RESUMO

A highly sensitive and selective ratiometric sensor for the quantification of cyanide (CN-) in aqueous samples has been developed using spherical gold nanoparticles (AuNPs) stabilized by polysorbate 40 (PS-40). Three different AuNP sizes (14, 40 and 80nm mean diameters) were used to evaluate the response of the sensor using both colorimetric and Resonance Rayleigh Scattering (RRS) detection schemes. The best results were obtained for the sensor using 40nm AuNPs, for which the limits of detection (LODs) were found to be 100nmolL-1 in a benchtop instrument and 500nmolL-1 by the naked eye, values well below the maximum acceptable level for drinking water (1.9µmolL-1) set by the World Health Organization (WHO). The practical use of the 40nm-AuNPs RRS sensor was demonstrated with the determination of CN- in drinking and fresh waters. Finally, the sensor was successfully implemented in a compact portable device consisting of two light-emitting diodes (LEDs) and a miniature spectrometer, turning this sensor into a very potent tool for its application as a quick routine field-deployable analytical method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA