Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell Biol Int ; 48(5): 594-609, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321826

RESUMO

The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Osteogênese/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Engenharia Tecidual/métodos , Hidrogéis/química , Alicerces Teciduais
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473978

RESUMO

Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.


Assuntos
Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/patologia , Tecido Adiposo/patologia , Adipócitos/patologia , Obesidade/patologia , Células Estromais/patologia , Modelos Animais de Doenças
3.
Curr Osteoporos Rep ; 16(3): 312-319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29667012

RESUMO

PURPOSE OF REVIEW: This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology. RECENT FINDINGS: Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. "State of the art" methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities. While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Envelhecimento/metabolismo , Células da Medula Óssea/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Doenças Ósseas Metabólicas/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Osso e Ossos/metabolismo , Metabolismo Energético , Hematopoese , Humanos , Obesidade/metabolismo , Osteogênese , Osteoporose/metabolismo
4.
Stem Cells ; 34(4): 1097-111, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865460

RESUMO

Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can reconstitute adipose tissue as a solid organ. These findings have the potential to provide new insights regarding the stem cell identity of adipose progenitor cells.


Assuntos
Adipócitos/transplante , Tecido Adiposo Branco/crescimento & desenvolvimento , Diferenciação Celular/genética , Transplante de Células-Tronco Mesenquimais , Células Estromais/transplante , Adipócitos/citologia , Tecido Adiposo Branco/citologia , Animais , Linhagem da Célula/genética , Separação Celular , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Medicina Regenerativa , Seda/química , Seda/uso terapêutico , Células Estromais/citologia , Alicerces Teciduais/química
5.
Calcif Tissue Int ; 94(1): 78-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24101233

RESUMO

Throughout life, a balance exists within the marrow cavity between adipose tissue and bone. Each tissue derives from a common progenitor cell known both as a "bone marrow-derived multipotent stromal cell" and as a "mesenchymal stem cell" (BMSC). The majority of in vitro and in vivo data suggest that BMSCs differentiate into adipocytes or osteoblasts in a reciprocal manner. For example, while ligand induction of the transcription factors peroxisome proliferator-activated receptor γ initiates BMSC adipogenesis, it suppresses osteogenesis. Nevertheless, this hypothesis may oversimplify a complex regulatory paradigm. The picture may be further complicated by the systemic impact of extramedullary adipose depots on bone via the secretion of protein adipokines and lipid metabolites. This review focuses on past and current literature examining the mechanisms governing the adipose-bone interface.


Assuntos
Adipócitos/metabolismo , Remodelação Óssea/fisiologia , Adipócitos/citologia , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Fatores de Transcrição/metabolismo
6.
Methods Mol Biol ; 2783: 323-333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478244

RESUMO

Advancements in three-dimensional in vitro cultures pose a need for modification of established two-dimensional culture functional assay methods. Application of three-dimensional in vitro models in drug screening and target validation, specifically in the development of compounds targeting adipose metabolic activity, requires optimization of current glucose uptake and lipolysis assay protocols to effectively measure adipocyte function in a three-dimensional platform. This chapter describes the establishment of three-dimensional cultures using Obatala Sciences' human-derived hydrogel, maintenance and treatment of the cultures, and evaluation of compound response via lipolysis and glucose uptake assays.


Assuntos
Adipócitos , Lipólise , Humanos , Adipócitos/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Dispositivos Lab-On-A-Chip
7.
Methods Mol Biol ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997535

RESUMO

Adipose tissue is recognized not only as an endocrine organ but also as a reservoir for adipose-derived stromal/stem cells (ASCs). ASCs have stimulated the interest of both the scientific and medical communities due to their therapeutic potential and applications in tissue engineering and regenerative medicine. ASCs are leveraged for their multipotency and their paracrine function. ASC behavior is highly variable and donor dependent. Donor age, body mass index, disease status, sex, and ethnicity can lead to differential overall function and quality. The impact of donor age and passage on ASC behavior has been well documented, impacting cell proliferation and differentiation potential and thus must be taken into careful consideration when conducting in vitro studies. Pooling of ASCs from different donors reduces heterogeneity among individual donors and produces ASCs with a consistent differentiation and paracrine profiles, an advantage for studies in biological aging. This chapter provides a detailed overview for studies related to quality control for ASC pools considering biological and chronological aging in ASCs. There are hallmarks of biological aging and specific assays associated with the evaluation of each hallmark. Nevertheless, here we present the assays that provide a standardized characterization and qualification of donor pools for their regenerative potential, considering chronological and biological age of the pool. The assays included in this chapter are considered quality control standards to evaluate cell proliferation, differentiation, colony-forming units, and cellular senescence from different donor age and cell passage cohorts.

8.
Methods Mol Biol ; 2783: 159-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478231

RESUMO

Hydrogels are considered a viable in vitro alternative to monolayer cultures. They provide quintessential characteristics for in vitro studies including biocompatibility, biodegradability, viscoelasticity, hydrophilicity, and low toxicity. Furthermore, many provide necessary extracellular matrix proteins and architecture to support cell growth, proliferation, differentiation, and migration. Synthetic and natural polymer-derived hydrogels both demonstrate positive qualities; however, natural hydrogels have attracted great interest due to their clinical relevancy. In particular, decellularized tissue-derived hydrogels have been identified as a significant resource for tissue engineering applications by mimicking the composition and architecture of their tissue of origin.The use of adipose tissue as a hydrogel has become more prevalent because of limitless resources and accessibility of the tissue itself. Obatala Sciences has established a manufacturing protocol for human decellularized adipose tissue (hDAT) using a series of steps including mechanical disruption, chemical disruption with N-Lauroylsarcosine, and enzymatic digestion with pepsin and hydrochloric acid.


Assuntos
Hidrogéis , Alicerces Teciduais , Humanos , Hidrogéis/química , Alicerces Teciduais/química , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular
9.
Methods Mol Biol ; 2783: 167-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478232

RESUMO

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Assuntos
Matriz Extracelular , Hidrogéis , Humanos , Hidrogéis/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Controle de Qualidade , Engenharia Tecidual/métodos
10.
BMC Cell Biol ; 14: 34, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23924189

RESUMO

BACKGROUND: Obesity is associated with a higher risk of developing cancer and co-morbidities that are part of the metabolic syndrome. Adipose tissue is recognized as an endocrine organ, as it affects a number of physiological functions, and contains adipose tissue-derived stem cells (ASCs). ASCs can differentiate into cells of multiple lineages, and as such are applicable to tissue engineering and regenerative medicine. Yet the question of whether ASC functionality is affected by the donor's body mass index (BMI) still exists. RESULTS: ASCs were isolated from patients having different BMIs (BMI-ASCs), within the ranges of 18.5-32.8. It was hypothesized that overweight BMI-ASCs would be more compromised in early adipogenic and osteogenic potential, and ability to form colonies in vitro. BMI was inversely correlated with ASC proliferation and colony forming potential as assessed by CyQUANT proliferation assay (fluorescence- based measurement of cellular DNA content), and colony forming assays. BMI was positively correlated with early time point (day 7) but not later time point (day 15) intracytoplasmic lipid accumulation as assessed by Oil-Red-O staining. Alizarin red staining and RT-PCR for alkaline phosphatase demonstrated that elevated BMI resulted in compromised ASC mineralization of extracellular matrix and decreased alkaline phosphatase mRNA expression. CONCLUSIONS: These data demonstrate that elevated BMI resulted in reduced ASC proliferation, and potentially compromised osteogenic capacity in vitro; thus BMI is an important criterion to consider in selecting ASC donors for clinical applications.


Assuntos
Células-Tronco Adultas/citologia , Índice de Massa Corporal , Diferenciação Celular/fisiologia , Proliferação de Células , Osteogênese/fisiologia , Gordura Subcutânea/citologia , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Meios de Cultura/farmacologia , Feminino , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Obesidade/patologia , Osteogênese/efeitos dos fármacos , Sobrepeso/patologia , Gordura Subcutânea/efeitos dos fármacos
11.
Adv Biol (Weinh) ; 7(8): e2200332, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236203

RESUMO

Hydrogels are 3D scaffolds used as alternatives to in vivo models for disease modeling and delivery of cells and drugs. Existing hydrogel classifications include synthetic, recombinant, chemically defined, plant- or animal-based, and tissue-derived matrices. There is a need for materials that can support both human tissue modeling and clinically relevant applications requiring stiffness tunability. Human-derived hydrogels are not only clinically relevant, but they also minimize the use of animal models for pre-clinical studies. This study aims to characterize XGel, a new human-derived hydrogel as an alternative to current murine-derived and synthetic recombinant hydrogels that features unique physiochemical, biochemical, and biological properties that support adipocyte and bone differentiation. Rheology studies determine the viscosity, stiffness, and gelation features of XGel. Quantitative studies for quality control support consistency in the protein content between lots. Proteomics studies reveal that XGel is predominantly composed of extracellular matrix proteins, including fibrillin, collagens I-VI, and fibronectin. Electron microscopy of the hydrogel provides phenotypic characteristics in terms of porosity and fiber size. The hydrogel demonstrates biocompatibility as a coating material and as a 3D scaffold for the growth of multiple cell types. The results provide insight into the biological compatibility of this human-derived hydrogel for tissue engineering.


Assuntos
Hidrogéis , Células-Tronco , Engenharia Tecidual , Hidrogéis/química , Humanos , Matriz Extracelular , Proliferação de Células , Células-Tronco/citologia
12.
Nanomedicine ; 8(4): 440-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21839055

RESUMO

The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. FROM THE CLINICAL EDITOR: Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.


Assuntos
Curcumina/farmacologia , Osteossarcoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Ciclodextrinas/farmacologia , Animais , Antineoplásicos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/ultraestrutura , Caspases/metabolismo , Linhagem Celular Tumoral , Curcumina/química , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Osteossarcoma/ultraestrutura , Transplante Heterólogo , gama-Ciclodextrinas/química
13.
Front Bioeng Biotechnol ; 10: 893992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845419

RESUMO

Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.

14.
Bioengineering (Basel) ; 9(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35735483

RESUMO

Tissue engineering is a promising approach for the repair and regeneration of cartilaginous tissue. Appropriate three-dimensional scaffolding materials that mimic cartilage are ideal for the repair of chondral defects. The emerging decellularized tissue-based scaffolds have the potential to provide essential biochemical signals and structural integrity, which mimics the natural tissue environment and directs cellular fate. Umbilical cord-derived hydrogels function as 3D scaffolding material, which support adherence, proliferation, migration, and differentiation of cells due to their similar biochemical composition to cartilage. Therefore, the present study aimed to establish a protocol for the formulation of a hydrogel from decellularized human umbilical cord (DUC) tissue, and assess its application in the proliferation and differentiation of UC-MSCs along chondrogenic lineage. The results showed that the umbilical cord was efficiently decellularized. Subsequently, DUC hydrogel was prepared, and in vitro chondral differentiation of MSCs seeded on the scaffold was determined. The developed protocol efficiently removed the cellular and nuclear content while retaining the extracellular matrix (ECM). DUC tissue, pre-gel, and hydrogels were evaluated by FTIR spectroscopy, which confirmed the gelation from pre-gel to hydrogel. SEM analysis revealed the fibril morphology and porosity of the DUC hydrogel. Calcein AM and Alamar blue assays confirmed the MSC survival, attachment, and proliferation in the DUC hydrogels. Following seeding of UC-MSCs in the hydrogels, they were cultured in stromal or chondrogenic media for 28 days, and the expression of chondrogenic marker genes including TGF-ß1, BMP2, SOX-9, SIX-1, GDF-5, and AGGRECAN was significantly increased (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Moreover, the hydrogel concentration was found to significantly affect the expression of chondrogenic marker genes. The overall results indicate that the DUC-hydrogel is compatible with MSCs and supports their chondrogenic differentiation in vitro.

15.
Bone Rep ; 17: 101601, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35874168

RESUMO

Adipose tissue is widely recognized as an abundant and accessible human tissue that serves as a source of cells and extracellular matrix scaffolds for regenerative surgical applications. Increasingly, orthopedic surgeons are turning to adipose tissue as a resource in their treatment of osteoarthritis and related conditions. In the U.S., the regulatory landscape governing the orthopedic surgical utilization of autologous and allogeneic adipose tissue remains complex. This manuscript reviews the Food and Drug Administration's nomenclature and guidance regarding adipose tissue products. Additionally, it surveys recent pre-clinical and clinical trial literature relating to the application of adipose-derived cells and tissues in the treatment of osteoarthritis.

16.
Biomater Transl ; 2(4): 301-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35837416

RESUMO

Microphysiological systems (MPS) created with human-derived cells and biomaterial scaffolds offer a potential in vitro alternative to in vivo animal models. The adoption of three-dimensional MPS models has economic, ethical, regulatory, and scientific implications for the fields of regenerative medicine, metabolism/obesity, oncology, and pharmaceutical drug discovery. Key opinion leaders acknowledge that MPS tools are uniquely positioned to aid in the objective to reduce, refine, and eventually replace animal experimentation while improving the accuracy of the finding's clinical translation. Adipose tissue has proven to be an accessible and available source of human-derived stromal vascular fraction (SVF) cells, a heterogeneous population available at point of care, and adipose-derived stromal/stem cells, a relatively homogeneous population requiring plastic adherence and culture expansion of the SVF cells. The adipose-derived stromal/stem cells or SVF cells, in combination with human tissue or synthetic biomaterial scaffolds, can be maintained for extended culture periods as three-dimensional MPS models under angiogenic, stromal, adipogenic, or osteogenic conditions. This review highlights recent literature relating to the versatile use of adipose-derived cells as fundamental components of three-dimensional MPS models for discovery research and development. In this context, it compares the merits and limitations of the adipose-derived stromal/stem cells relative to SVF cell models and considers the likely directions that this emerging field of scientific discovery will take in the near future.

17.
Cells ; 10(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204869

RESUMO

Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.


Assuntos
Adipogenia , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Engenharia Tecidual , Tecido Adiposo/citologia , Humanos , Células-Tronco Mesenquimais/citologia
18.
Stem Cells Dev ; 30(23): 1141-1152, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34130483

RESUMO

Monitoring wound progression over time is a critical aspect for studies focused on in-depth molecular analysis or on evaluating the efficacy of potential novel therapies. Histopathological analysis of wound biopsies can provide significant insight into healing dynamics, yet there is no standardized and reproducible scoring system currently available. The purpose of this study was to develop and statistically validate a scoring system based on parameters in each phase of healing that can be easily and accurately assessed using either Hematoxylin & Eosin (H&E) or Masson's Trichrome (MT) staining. These parameters included re-epithelization, epithelial thickness index, keratinization, granulation tissue thickness, remodeling, and the scar elevation index. The initial phase of the study was to (1) optimize and clarify healing parameters to limit investigator bias and variability; (2) compare the consistency of parameters assessed using H&E versus MT staining. During the validation phase of this study, the accuracy and reproducibility of this scoring system was independently iterated upon and validated in four different types of murine skin wound models (Excisional; punch biopsy; pressure ulcers; burn wounds). A total of n = 54 histology sections were randomized, blinded, and assigned to two groups of independent investigators (n = 5 per group) for analysis. The sensitivity of each parameter (ranging between 80% and 95%) is reported with illustrations on the appropriate assessment method using ImageJ software. In the validated scoring system, the lowest score (score:0) is associated with an open/unhealed wound as is evident immediately and within the first day postinjury, whereas the highest score (score:12) is associated with a completely closed and healed wound without excessive scarring. This study defines and describes the minimum recommended criteria for assessing wound healing dynamics using the SPOT skin wound score. The acronym SPOT refers to the academic and scientific institutions that were involved in the development of the scoring system, namely, Stellenbosch University, Polish Academy of Sciences, Obatala Sciences, and the University of Texas Southwestern.


Assuntos
Pele , Cicatrização , Animais , Humanos , Camundongos , Reprodutibilidade dos Testes , Pele/patologia
19.
Tissue Eng Part A ; 27(7-8): 479-488, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528293

RESUMO

International regulatory agencies such as the Food and Drug Administration have mandated that the scientific community develop humanized microphysiological systems (MPS) as an in vitro alternative to animal models in the near future. While the breast cancer research community has long appreciated the importance of three-dimensional growth dynamics in their experimental models, there are remaining obstacles preventing a full conversion to humanized MPS for drug discovery and pathophysiological studies. This perspective evaluates the current status of human tissue-derived cells and scaffolds as building blocks for an "idealized" breast cancer MPS based on bioengineering design principles. It considers the utility of adipose tissue as a potential source of endothelial, lymphohematopoietic, and stromal cells for the support of breast cancer epithelial cells. The relative merits of potential MPS scaffolds derived from adipose tissue, blood components, and synthetic biomaterials is evaluated relative to the current "gold standard" material, Matrigel, a murine chondrosarcoma-derived basement membrane-enriched hydrogel. The advantages and limitations of a humanized breast cancer MPS are discussed in the context of in-process and destructive read-out assays. Impact statement Regulatory authorities have highlighted microphysiological systems as an emerging tool in breast cancer research. This has been led by calls for more predictive human models and reduced animal experimentation. This perspective describes how human-derived cells, extracellular matrices, and hydrogels will provide the building blocks to create breast cancer models that accurately reflect diversity at multiple levels, that is, patient ethnicity, pathophysiology, and metabolic status.


Assuntos
Neoplasias da Mama , Animais , Bioengenharia , Feminino , Humanos , Camundongos , Estados Unidos
20.
Tissue Eng Part B Rev ; 26(6): 586-595, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32216545

RESUMO

The obesity epidemic and its associated comorbidities present a looming challenge to health care delivery throughout the world. Obesity is characterized as a sterile inflammatory process within adipose tissues leading to dysregulated secretion of bioactive adipokines such as adiponectin and leptin, as well as systemic metabolic dysfunction. The majority of current obesity research has focused primarily on preclinical animal models in vivo and two-dimensional cell culture models in vitro. Neither of these generalized approaches is optimal due to interspecies variability, insufficient accuracy with respect to predicting human outcomes, and failure to recapitulate the three-dimensional (3D) microenvironment. Consequently, there is a growing demand and need for more sophisticated microphysiological systems to reproduce more physiologically accurate human white and brown/beige adipose depots. To address this research need, human and murine cell lines and primary cultures are being combined with bioscaffolds to create functional 3D environments that are suitable for metabolically active adipose organoids in both static and perfusion bioreactor cultures. The development of these technologies will have considerable impact on the future pace of discovery for novel small molecules and biologics designed to prevent and treat metabolic syndrome and obesity in humans. Furthermore, when these adipose tissue models are integrated with other organ systems they will have applicability to obesity-related disorders such as diabetes, nonalcoholic fatty liver disease, and osteoarthritis. Impact statement The current review article summarizes the advances made within the organ-onchip field, as it pertains to adipose tissue models of obesity and obesity-related syndromes, such as diabetes, non-alcoholic fatty liver disease, and osteoarthritis. As humanized 3D adipose-derived constructs become more accessible to the research community, it is anticipated that they will accelerate and enhance the drug discovery pipeline for obesity, diabetes, and metabolic diseases by reducing the preclinical evaluation process and improving predictive accuracy. Such developments, applications, and usages of existing technologies can change the paradigm of personalized medicine and create substantial progress in our approach to modern medicine.


Assuntos
Tecido Adiposo Marrom , Dispositivos Lab-On-A-Chip , Animais , Humanos , Camundongos , Obesidade/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA