Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 125(3): 427-37, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336631

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration, irreversible cartilage and bone destruction, and exuberant coagulation system activity within joint tissue. Here, we demonstrate that the coagulation transglutaminase, factor XIII (fXIII), drives arthritis pathogenesis by promoting local inflammatory and tissue degradative and remodeling events. All pathological features of collagen-induced arthritis (CIA) were significantly reduced in fXIII-deficient mice. However, the most striking difference in outcome was the preservation of cartilage and bone in fXIIIA(-/-) mice concurrent with reduced osteoclast numbers and activity. The local expression of osteoclast effectors receptor activator of nuclear factor-κB ligand (RANKL) and tartrate resistant acid phosphatase were significantly diminished in CIA-challenged and even unchallenged fXIIIA(-/-) mice relative to wild-type animals, but were similar in wild-type and fibrinogen-deficient mice. Impaired osteoclast formation in fXIIIA(-/-) mice was not due to an inherent deficiency of monocyte precursors, but it was linked to reduced RANKL-driven osteoclast formation. Furthermore, treatment of mice with the pan-transglutaminase inhibitor cystamine resulted in significantly diminished CIA pathology and local markers of osteoclastogenesis. Thus, eliminating fXIIIA limits inflammatory arthritis and protects from cartilage and bone destruction in part through mechanisms linked to reduced RANKL-mediated osteoclastogenesis. In summary, therapeutic strategies targeting fXIII activity may prove beneficial in limiting arthropathies and other degenerative bone diseases.


Assuntos
Artrite Experimental/patologia , Doenças Ósseas/fisiopatologia , Fator XIII/fisiologia , Inflamação/fisiopatologia , Osteoclastos/patologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Western Blotting , Doenças Ósseas/complicações , Diferenciação Celular , Células Cultivadas , Colágeno/toxicidade , Feminino , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Blood ; 117(23): 6326-37, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21436072

RESUMO

Thrombin is a positive mediator of thrombus formation through the proteolytic activation of protease-activated receptors (PARs), fibrinogen, factor XI (fXI), and other substrates, and a negative regulator through activation of protein C, a natural anticoagulant with anti-inflammatory/cytoprotective properties. Protease-engineering studies have established that 2 active-site substitutions, W215A and E217A (fII(WE)), result in dramatically reduced catalytic efficiency with procoagulant substrates while largely preserving thrombomodulin (TM)-dependent protein C activation. To explore the hypothesis that a prothrombin variant favoring antithrombotic pathways would be compatible with development but limit inflammatory processes in vivo, we generated mice carrying the fII(WE) mutations within the endogenous prothrombin gene. Unlike fII-null embryos, fII(WE/WE) mice uniformly developed to term. Nevertheless, these mice ultimately succumbed to spontaneous bleeding events shortly after birth. Heterozygous fII(WT/WE) mice were viable and fertile despite a shift toward an antithrombotic phenotype exemplified by prolonged tail-bleeding times and times-to-occlusion after FeCl3 vessel injury. More interestingly, prothrombin(WE) expression significantly ameliorated the development of inflammatory joint disease in mice challenged with collagen-induced arthritis (CIA). The administration of active recombinant thrombin(WE) also suppressed the development of CIA in wild-type mice. These studies provide a proof-of-principle that pro/thrombin variants engineered with altered substrate specificity may offer therapeutic opportunities for limiting inflammatory disease processes.


Assuntos
Artrite Experimental/metabolismo , Mutação de Sentido Incorreto , Protrombina/metabolismo , Substituição de Aminoácidos , Animais , Artrite Experimental/genética , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Proteína C/genética , Proteína C/metabolismo , Protrombina/genética
3.
Blood Adv ; 1(9): 545-556, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296974

RESUMO

The plasminogen activation (PA) system has been implicated in driving inflammatory arthritis, but the precise contribution of PA system components to arthritis pathogenesis remains poorly defined. Here, the role of urokinase plasminogen activator (uPA) and its cognate receptor (uPAR) in the development and severity of inflammatory joint disease was determined using uPA- and uPAR-deficient mice inbred to the strain DBA/1J, a genetic background highly susceptible to collagen-induced arthritis (CIA). Mice deficient in uPA displayed a near-complete amelioration of macroscopic and histological inflammatory joint disease following CIA challenge. Similarly, CIA-challenged uPAR-deficient mice exhibited significant amelioration of arthritis incidence and severity. Reduced disease development in uPA-deficient and uPAR-deficient mice was not due to an altered adaptive immune response to the CIA challenge. Reciprocal bone marrow transplant studies indicated that uPAR-driven CIA was due to expression by hematopoietic-derived cells, as mice with uPAR-deficient bone marrow challenged with CIA developed significantly reduced macroscopic and histological joint disease as compared with mice with uPAR expression limited to non-hematopoietic-derived cells. These findings indicate a fundamental role for uPAR-expressing hematopoietic cells in driving arthritis incidence and progression. Thus, uPA/uPAR-mediated cell surface proteolysis and/or uPAR-mediated signaling events promote inflammatory joint disease, indicating that disruption of this key proteolytic/signaling system may provide a novel therapeutic strategy to limit clinical arthritis.

4.
Cancer Res ; 75(19): 4235-43, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238780

RESUMO

Thrombin-mediated proteolysis is a major determinant of metastasis, but is not universally important for primary tumor growth. Here, we report that colorectal adenocarcinoma represents one important exception whereby thrombin-mediated functions support both primary tumor growth and metastasis. In contrast with studies of multiple nongastrointestinal cancers, we found that the growth of primary tumors formed by murine and human colon cancer cells was reduced in mice by genetic or pharmacologic reduction of circulating prothrombin. Reduced prothrombin expression was associated with lower mitotic indices and invasion of surrounding tissue. Mechanistic investigations revealed that thrombin-driven colonic adenocarcinoma growth relied upon at least two targets of thrombin-mediated proteolysis, protease-activated receptor-1 (PAR-1) expressed by stromal cells and the extracellular matrix protein, fibrinogen. Colonic adenocarcinoma growth was reduced in PAR-1-deficient mice, implicating stromal cell-associated PAR-1 as one thrombin target important for tumor outgrowth. Furthermore, tumor growth was dramatically impeded in fibrinogen-deficient mice, offering the first direct evidence of a critical functional role for fibrinogen in malignant tumor growth. Tumors harvested from fibrinogen-deficient mice displayed a relative reduction in cell proliferative indices, as well as increased tumor necrosis and decreased tumor vascular density. Collectively, our findings established a functional role for thrombin and its targets PAR-1 and fibrinogen in the pathogenesis of colonic adenocarcinoma, supporting tumor growth as well as local invasion and metastasis.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Fibrinogênio/fisiologia , Receptor PAR-1/fisiologia , Trombina/fisiologia , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/metabolismo , Afibrinogenemia/complicações , Afibrinogenemia/genética , Animais , Divisão Celular , Linhagem Celular Tumoral , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Progressão da Doença , Feminino , Células HCT116/transplante , Xenoenxertos , Humanos , Masculino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/fisiopatologia , Protrombina/análise , Receptor PAR-1/deficiência , Células Estromais/metabolismo , Trombina/deficiência , Carga Tumoral , Microambiente Tumoral
5.
Arthritis Rheumatol ; 66(6): 1504-16, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24574269

RESUMO

OBJECTIVE: A fundamental metric in the diagnosis of arthropathies is the pattern of joint involvement, including differences in proximal versus distal joints and patterns of symmetric or asymmetric disease. The basis for joint selectivity among arthritides and/or within a defined disease such as rheumatoid arthritis remains enigmatic. Coagulation and fibrinolytic activity are observed in both experimental animals with inflammatory joint disease and patients with inflammatory arthritis. However, the contribution of specific hemostatic factors to joint disease is not fully defined. We sought to determine the contribution of the fibrinolytic protease, plasminogen, to tumor necrosis factor α (TNFα)-driven arthritis in distinct joints in mice. METHODS: The impact of plasminogen and/or fibrinogen genetic deficiencies on arthritis progression was evaluated in Tg197 mice genetically predisposed to spontaneous, nonabating, and erosive polyarthritis due to exuberant human TNFα expression. RESULTS: Elimination of plasminogen in Tg197 mice significantly exacerbated the incidence and severity of arthritis within the paw joints, but simultaneously and dramatically diminished the entire spectrum of pathologies within the knee joints of the same animals. These opposing outcomes were both mechanistically linked to fibrin(ogen), in that superimposing fibrinogen deficiency reversed both the proarthritic phenotype in the paws and arthritis resistance in the knees of plasminogen-deficient mice. Intriguingly, the change in disease severity in the knees, but not the paws, was associated with a plasminogen-dependent reduction in matrix metalloproteinase 9 activity. CONCLUSION: Plasminogen is a key molecular determinant of inflammatory joint disease capable of simultaneously driving or ameliorating arthritis pathogenesis in distinct anatomic locations in the same subject.


Assuntos
Artrite Experimental/etiologia , Artrite Experimental/metabolismo , Articulações/metabolismo , Plasminogênio/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Fibrinogênio/genética , Fibrinogênio/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasminogênio/deficiência , Plasminogênio/genética , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
6.
J Vis Exp ; (87)2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24837630

RESUMO

We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Animals were then placed in the rotational holder (MARS) of the in vivo imaging system. Images were acquired in 10° steps over 380°. A rectangular region of interest (ROI) was placed across the full image width at the model disease site. Within the ROI, and for every image, mean fluorescence intensity was computed after background subtraction. In the mouse models studied, the labeled nanovesicles were taken up in both the orthotopic and transgenic brain tumors, and in the arthritic sites (toes and ankles). Curve analysis of the multi angle image ROIs determined the angle with the highest signal. Thus, the optimal angle for imaging each disease site was characterized. The MAROI method applied to imaging of fluorescent compounds is a noninvasive, economical, and precise tool for in vivo quantitative analysis of the disease states in the described mouse models.


Assuntos
Artrite/diagnóstico , Neoplasias Encefálicas/diagnóstico , Corantes Fluorescentes/administração & dosagem , Nanoestruturas/administração & dosagem , Óptica e Fotônica/métodos , Fosfatidilserinas/administração & dosagem , Saposinas/administração & dosagem , Absorção , Animais , Artrite/metabolismo , Artrite/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Feminino , Corantes Fluorescentes/farmacocinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos Transgênicos , Imagem Óptica , Óptica e Fotônica/instrumentação , Imagem Corporal Total
7.
PLoS One ; 7(3): e33966, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470501

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is "flipped" to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7-8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints.


Assuntos
Artrite Experimental/diagnóstico , Nanoestruturas , Fosfatidilserinas/química , Saposinas , Animais , Artrite/diagnóstico , Artrite/patologia , Artrite Experimental/patologia , Antígenos CD11/metabolismo , Diagnóstico por Imagem , Modelos Animais de Doenças , Corantes Fluorescentes/química , Articulações/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Nanoestruturas/química , Saposinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA