Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Opt Lett ; 40(9): 1948-51, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927755

RESUMO

Wavelength-division multiplexing is demonstrated for a set of two doubly clamped beams. Using a single input/output waveguide in a nanophotonic detection system, the two mechanical beams are independently addressable using different wavelength channels as determined by their respective racetrack resonator detection cavities. The two cavities slightly overlap, which also enables the mechanical frequency of both beams to be detected simultaneously with a single wavelength. Finally, to physically map which wavelength channel corresponds to which specific device, a heating laser is targeted individually on each beam to create a reversible mechanical frequency shift. This multiplexing method would allow for the simpler detection of large arrays of nanomechanical devices in a sensor system.

2.
Phys Rev Lett ; 103(24): 244501, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20366202

RESUMO

Interactions of nanoscale structures with fluids are of current interest both in the elucidation of fluid dynamics at these small scales, and in determining the ultimate performance of nanoelectromechanical systems outside of vacuum. We present a comprehensive study of nanomechanical damping in three gases (He, N2, CO2), and liquid CO2. Resonant dynamics in multiple devices of varying size and frequency is measured over 10 decades of pressure (1 mPa-20 MPa) using time-domain stroboscopic optical interferometry. The wide pressure range allows full exploration of the regions of validity of Newtonian and non-Newtonian flow damping models. Observing free molecular flow behavior extending above 1 atm, we find a fluid relaxation time model to be valid throughout, but not beyond, the non-Newtonian regime, and a Newtonian flow vibrating spheres model to be valid in the viscous limit.

3.
Nat Nanotechnol ; 12(2): 127-131, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27798605

RESUMO

Nanophotonic optomechanical devices allow the observation of nanoscale vibrations with a sensitivity that has dramatically advanced the metrology of nanomechanical structures and has the potential to impact studies of nanoscale physical systems in a similar manner. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radiofrequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF-driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for the observation of Barkhausen steps in the magnetic hysteresis of a lithographically patterned permalloy island. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally assisted driven hopping of a magnetic vortex core between neighbouring pinning sites. The on-chip magnetosusceptometer scheme offers a promising path to powerful integrated cavity optomechanical devices for the quantitative characterization of magnetic micro- and nanosystems in science and technology.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056313, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004868

RESUMO

We present a comprehensive study of nanoelectromechanical systems in pressurized fluids. Resonant responses and quality factors are monitored in five different gases and one liquid, in pressures ranging from vacuum to 20 MPa, in order to evaluate theoretical models of device-fluid interactions at the nanoscale. The traditional Newell picture of microresonator damping in different pressure regimes is found to be inadequate in describing nanoresonators in general. Damping at intermediate pressure ranges is better physically characterized by a Weissenberg number (which compares oscillation frequencies with fluid relaxation rates) than a Knudsen number (which compares mean free paths with device widths) and most adequately described by the Yakhot and Colosqui model. At high-pressure ranges, two models are found to give good agreement with data: the phenomenological model of vibrating spheres and the Sader and Bhiladvala model for the viscous regime. The latter is also successful in explicitly predicting pressure-dependent behavior of the viscous mass load and damping. We observe significant increases in damping due to the squeezed film (SF) of gas between the device and substrate as well as due to undercut (an unavoidable artifact of the standard fabrication technique); correcting the shape of the devices with a focused ion beam allows us to differentiate these two factors. Application of the SF model accounts well for additional damping at high pressures while only qualitatively agreeing at lower pressures. The extensive data collected allow additional insight into fundamental processes underlying fluid damping at the nanoscale, particularly in the intermediate- and high-pressure regimes.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011922, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867228

RESUMO

When particles in liquid suspensions flow through channels and pipes in a laminar fashion, the resulting parabolic velocity profile gives rise to shear, which induces the particles to rotate. If flowing suspensions containing dielectric particles are immersed in an external electric field, the anisotropic polarization induced in rotating nonspherical particles will vary with the orientation of the particle with respect to the external field; what results is an uncertainty in experimental measurements that involve particle polarization. The present study establishes the limits of this uncertainty and shows that departure from spherical symmetry in individual particles can lead to a significant overlap in measurements attempting to discriminate between particle subpopulations in suspensions. For example, the uncertainty in signal amplitude for a population of activated T-lymphocytes can be as high as 20%. Such concerns arise in applications like field-flow fractionation, dielectrophoretic sorting of particles, flow impedance measurements and cytometry, and, most recently, isodielectric separation, all of which are used to separate particles in a flow based on their dielectric response. This paper considers axisymmetric particles as the first departure from the approximation of spherical symmetry, shows how to calculate an estimate of the size of the population overlap, and suggests possible strategies to minimize it.


Assuntos
Biofísica/métodos , Linfócitos T/citologia , Algoritmos , Animais , Anisotropia , Eletrodos , Campos Eletromagnéticos , Humanos , Interferometria/métodos , Microfluídica , Modelos Estatísticos , Tamanho da Partícula , Rotação , Resistência ao Cisalhamento , Estresse Mecânico , Linfócitos T/patologia
6.
Lab Chip ; 9(23): 3406-12, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19904408

RESUMO

In biomedical applications ranging from the study of pathogen invasion to drug efficacy assays, there is a growing need to develop minimally invasive techniques for single-cell analysis. This has inspired researchers to develop optical, electrical, microelectromechanical and microfluidic devices for exploring phenomena at the single-cell level. In this work, we demonstrate an electrical approach for single-cell analysis wherein a 1.6 GHz microwave interferometer detects the capacitance changes (DeltaC) produced by single cells flowing past a coplanar interdigitated electrode pair. The experimental and simulated capacitance changes generated by yeast cells are in close agreement. By using the capacitance changes of uniform polystyrene spheres (diameter = 5.7 microm) for calibration purposes, we demonstrate a 0.65 aF sensitivity in a 10 ms response time. Using an RC circuit, a low frequency sinusoidal potential is simultaneously superimposed on the electrode pair to generate a dielectrophoretic force that translates cells. Specifically, when yeast cells suspended in a solution of 90 ppm NaCl in deionized water are exposed to 10 kHz and 3 MHz potentials (ranging from 1-3 V(pp)), they experience negative and positive dielectrophoresis, respectively. The corresponding changes in cell elevation above the interdigitated electrodes are detected using the asymmetry of the capacitance signature produced by the cell. Cell elevation changes can be detected in less than 80 ms. The minimum detectable change in elevation is estimated to be 0.22 microm. This approach will have applications in rapid single-cell dielectrophoretic analysis, and may also prove useful in conjunction with impedance spectroscopy.


Assuntos
Interferometria/instrumentação , Técnicas Microbiológicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Micro-Ondas , Análise de Célula Única/métodos , Eletrodos , Desenho de Equipamento , Técnicas Microbiológicas/instrumentação , Microesferas , Sensibilidade e Especificidade , Análise de Célula Única/instrumentação , Leveduras/citologia
7.
Rev Sci Instrum ; 79(9): 093701, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19044419

RESUMO

A simple yet versatile apparatus for optical microscopy investigations of solid-state devices under high gas pressures is presented. Interchangeable high-grade sapphire windows with different thicknesses allow variable choice of trade-off between the maximum operating pressure and maximum spatial resolution. The capabilities of this compact chamber were tested by performing stroboscopic optical interferometry on nanoelectromechanical systems (NEMSs) under capacitive excitation. With a 1.7 mm thick sapphire window, the cell is safe to operate at pressures ranging from vacuum to 5 MPa. Minimal optical wavefront distortion allows NEMSs with linear dimensions of 0.1x1.6 microm(2) to be explored. For a sapphire window with a maximum thickness of 6 mm, the safe operating pressure increases up to an estimated 60 MPa; however, the increasing distortions inhibit signal from NEMSs smaller than approximately 0.5x1 microm(2). The cell can be used for confocal microscopy, microphotoluminescence and electroluminescence, light scattering spectroscopy, and reflectivity. The light weight and compact design of the chamber allow mounting on a precision piezomotion control stage or inside a volume tight apparatus such as cryostats.

8.
Phys Rev Lett ; 98(8): 087201, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359122

RESUMO

Time-resolved scanning Kerr effect microscopy has been used to study magnetization dynamics in Permalloy thin films excited by transient magnetic pulses generated by a micrometer-scale transmission line structure. The results are consistent with magnetostatic spin wave theory and are supported by micromagnetic simulations. Magnetostatic volume and surface spin waves are measured for the same specimen using different bias field orientations and can be accurately calculated by k-space integrations over all excited plane wave components. A single damping constant of Gilbert form is sufficient to describe both scenarios. The nonuniform pulsed field plays a key role in the spin wave dynamics, with its Fourier transform serving as a weighting function for the participating modes. The intrinsic Gilbert damping parameter alpha is most conveniently measured when the spin waves are effectively stationary.

9.
Science ; 317(5839): 780-3, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17690289

RESUMO

Efficient actuation is crucial to obtaining optimal performance from nanoelectromechanical systems (NEMS). We employed epitaxial piezoelectric semiconductors to obtain efficient and fully integrated NEMS actuation, which is based on exploitation of the interaction between piezoelectric strain and built-in charge depletion. The underlying actuation mechanism in these depletion-mediated NEMS becomes important only for devices with dimensions approaching semiconductor depletion lengths. The induced actuation forces are controlled electrically, and resonant excitation approaching single-electron efficiency is demonstrated. The fundamental electromechanical coupling itself can be programmed by heterostructure band engineering, externally controllable charge depletion, and crystallographic orientation. These attributes are combined to realize a prototype, mechanically based, exclusive-or logic element.

10.
Nano Lett ; 5(2): 383-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15794630

RESUMO

Ensembles of iron nanocrystals up to 25 nm in diameter embedded in SiO(2) were found to exhibit an ultrafast magnetic response to a transient out-of-plane magnetic field. The response time varies as a function of in-plane bias magnetic field with the fastest rise times, as short as 26 ps, observed for both zero and high bias fields (140 kA/m). Analytical modeling and micromagnetic simulations confirm that magnetostatic interactions between nanoparticles play an important role in the dynamic response.


Assuntos
Campos Eletromagnéticos , Ferro/química , Ferro/efeitos da radiação , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/efeitos da radiação , Dióxido de Silício/química , Simulação por Computador , Cinética , Teste de Materiais , Microscopia de Varredura por Sonda/métodos , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula
11.
Anal Chem ; 76(9): 2544-52, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15117196

RESUMO

A facile method for the preparation of thin-film carbon electrodes by electron beam evaporation onto highly doped silicon is presented. The physical and electrochemical properties of these films both before and after postdeposition pyrolysis are investigated. Raman spectroscopy establishes the amorphous structure of the nonpyrolyzed carbon films and confirms the formation of graphitic carbon after pyrolysis at 1000 degrees C. Scanning force microscopy reveals the root-mean-square roughness of nonpyrolyzed films to be approximately 1 A, while pyrolyzed films exhibit an increased roughness of approximately 4 A. The electrochemical behavior of the electrodes resembles glassy carbon, with measured heterogeneous electron-transfer rate constants among the highest measured for thin carbon films. These carbon film electrodes will potentially find applications in such fields as molecular electronics and scanning probe microscopy of adsorbed species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA