Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pain Res ; 17: 2287-2298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952995

RESUMO

Purpose: Joint pain is one of the most commonly reported pain types in the United States. In the case of patients suffering from inflammatory diseases such as osteoarthritis (OA) and gout, persistent inflammation due to long-term overexpression of several key cytokines has been linked to neuronal hypersensitivity and damage within the joints. Ultimately, a subset of patients develop chronic pain. Pharmacologic treatment of joint pain involves the use of analgesics such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs), opioids, antidepressants, as well as intra-articular injections of corticosteroids and hyaluronic acid. However, NSAIDs are short-acting and fail to alleviate severe pain, opioids are generally ineffective at managing chronic pain, and all therapeutic options involve increased risks of serious side effects. Methods: We explored the therapeutic and analgesic effects of transforming growth factor-ß-activated kinase 1 (TAK1) inhibition in both the monoiodoacetate (MIA) and monosodium urate (MSU) models of joint pain as an innovative strategy for alleviating chronic inflammatory pain. Mechanical allodynia (Von Frey), weight-bearing and histological changes were measured in separate groups of rats receiving either the selective TAK1 inhibitor, HS-276, gabapentin or vehicle. Results: Our data support that TAK1 inhibition effectively prevented the development of mechanical allodynia and differential weight-bearing in the MIA model. In the MSU model of gouty arthritis, treatment with HS-276 significantly reduced mechanical allodynia and knee edema in female rats, but not male rats. Histological evaluation of effected joints in both models showed that HS-276 treatment significantly reduced disease-induced degradation of the joint. Conclusion: Our results support that TAK1 is a critical signaling node in inflammatory joint diseases such as OA and gouty arthritis. Selective pharmacological inhibition significantly attenuated several aspects of the disease, including joint degeneration and mechanical pain. Thus, TAK1 is a novel therapeutic target for the treatment of painful inflammatory joint diseases. Perspective: This article reports on the therapeutic potential of TAK1 in the treatment of chronic inflammatory joint diseases such as OA and gout. Using the selective TAK1 inhibitor, HS-276, we show the therapeutic and analgesic effects of TAK1 inhibition in two preclinical murine models of inflammatory joint pain.

2.
Pharmacol Res Perspect ; 11(4): e01124, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37564034

RESUMO

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by hyperactive immune cells within the joints, which leads to inflammation, bone degeneration, and chronic pain. For several decades, frontline immunomodulators such as the anti-tumor necrosis factor (TNF) biologics adalimumab (Humira), etanercept (Enbrel), and infliximab (Remicade) have successfully managed disease progression for many patients. However, over time, patients become refractory to these treatments requiring chronic disease to be managed with conventional and more problematic disease modifying antirheumatic drugs such as methotrexate and hydroxychloroquine, and corticosteroids. Due to the large proportion of patients who continue to fail on frontline biologic therapies, there remains an unmet need to derive novel alternative targets with improved efficacy and safety profiles to treat RA. Recent advances in the field have defined novel targets that play important roles in RA pathology, including the Janus activated kinase (JAK) and transforming growth factor beta activated kinase-1 (TAK1). Although three inhibitors of the JAK signaling pathway have been approved for the treatment of moderately to severely active RA in patients who failed on one or more anti-TNFs, at present, no FDA approved TAK1 treatments exist. Our recent discovery of a highly potent and selective, orally bioavailable TAK1 inhibitor has provided insight into the therapeutic potential of this protein kinase as a novel target for RA. Here, we show the distinct cytokine signaling of tofacitnib (Xeljanz; JAK1/3 inhibitor) compared to HS-276 (TAK1 inhibitor) in lipopolysaccharide (LPS) challenged THP-1 cells. Furthermore, in the collagen induced arthritis pre-clinical mouse model of RA, both tofacintib and HS-276 attenuated disease activity score and inflammatory cytokines in the serum. Overall, our results delineate the distinct cytokine signaling of JAK1/3 and TAK1 targeted therapies in vitro and in vivo and suggest that selective TAK1 inhibitors may provide superior therapeutic relief in RA with fewer adverse events.


Assuntos
Antirreumáticos , Artrite Reumatoide , Animais , Camundongos , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Etanercepte/uso terapêutico , Adalimumab , Infliximab/uso terapêutico , Citocinas/metabolismo , Transdução de Sinais
3.
Sci Rep ; 13(1): 22873, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129491

RESUMO

Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1ß. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1ß and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , Animais , Camundongos , Leucócitos Mononucleares , Proteínas de Membrana , Interleucina-6 , Citocinas
4.
ACS Chem Biol ; 17(3): 536-544, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35234444

RESUMO

Selective targeting of TNF in inflammatory diseases such as rheumatoid arthritis (RA) has provided great therapeutic benefit to many patients with chronic RA. Although these therapies show initially high response rates, their therapeutic benefit is limited over the lifetime of the patient due to the development of antidrug antibodies that preclude proper therapeutic benefits. As a result, patients often return to more problematic therapies such as methotrexate or hydroxychloroquine, which carry long-term side effects. Thus, there is an unmet medical need to develop alternative treatments enabling patients to regain the benefits of selectively targeting TNF functions in vivo. The protein kinase TAK1 is a critical signaling node in TNF-mediated intracellular signaling, regulating downstream NF-κß activation, leading to the transcription of inflammatory cytokines. TAK1 inhibitors have been developed but have been limited in their clinical advancement due to the lack of selectivity within the human kinome and, most importantly, lack of oral bioavailability. Using a directed medicinal chemistry approach, driven by the cocrystal structure of the TAK1 inhibitor takinib, we developed HS-276, a potent (Ki = 2.5 nM) and highly selective orally bioavailable TAK1 inhibitor. Following oral administration in normal mice, HS-276 is well tolerated (MTD >100 mg/Kg), displaying >95% bioavailability with µM plasma levels. The in vitro and in vivo efficacy of HS-276 showed significant inhibition of TNF-mediated cytokine profiles, correlating with significant attenuation of arthritic-like symptoms in the CIA mouse model of inflammatory RA. Our studies reinforce the hypothesis that TAK1 can be safely targeted pharmacologically to provide an effective alternative to frontline biologic-based RA therapeutics.


Assuntos
Artrite Reumatoide , MAP Quinase Quinase Quinases , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA