Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 151(6): 3633, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778207

RESUMO

Understanding the elastic properties of materials is critical for their safe incorporation and predictable performance. Current methods of bulk elastic characterization often have notable limitations for in situ structural applications, with usage restricted to simple geometries and material distributions. To address these existing issues, this study sought to expand the capabilities of resonant ultrasound spectroscopy (RUS), an established nondestructive evaluation method, to include the characterization of isotropic multi-material samples. In this work, finite-element-based RUS analysis consisted of numerical simulations and experimental testing of composite samples comprised of material pairs with varying elasticity and density contrasts. Utilizing genetic algorithm inversion and mode matching, our results demonstrate that elastic properties of multi-material samples can be reliably identified within several percent of known or nominal values using a minimum number of identified resonance modes, given sample mass is held consistent. The accurate recovery of material properties for composite samples of varying material similarity and geometry expands the pool of viable samples for RUS and advances the method towards in situ inspection and evaluation.

2.
Proc Natl Acad Sci U S A ; 113(40): 11158-11161, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647904

RESUMO

The electronic and thermodynamic complexity of plutonium has resisted a fundamental understanding for this important elemental metal. A critical test of any theory is the unusual softening of the bulk modulus with increasing temperature, a result that is counterintuitive because no or very little change in the atomic volume is observed upon heating. This unexpected behavior has in the past been attributed to competing but never-observed electronic states with different bonding properties similar to the scenario with magnetic states in Invar alloys. Using the recent observation of plutonium dynamic magnetism, we construct a theory for plutonium that agrees with relevant measurements by using density-functional-theory (DFT) calculations with no free parameters to compute the effect of longitudinal spin fluctuations on the temperature dependence of the bulk moduli in δ-Pu. We show that the softening with temperature can be understood in terms of a continuous distribution of thermally activated spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA