Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Psychiatry ; 26(7): 3646-3656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32632206

RESUMO

Psychiatric disorders are associated with accelerated aging and enhanced risk for neurodegenerative disorders. Brain aging is associated with molecular, cellular, and structural changes that are robust on the group level, yet show substantial inter-individual variability. Here we assessed deviations in gene expression from normal age-dependent trajectories, and tested their validity as predictors of risk for major mental illnesses and neurodegenerative disorders. We performed large-scale gene expression and genotype analyses in postmortem samples of two frontal cortical brain regions from 214 control subjects aged 20-90 years. Individual estimates of "molecular age" were derived from age-dependent genes, identified by robust regression analysis. Deviation from chronological age was defined as "delta age". Genetic variants associated with deviations from normal gene expression patterns were identified by expression quantitative trait loci (cis-eQTL) of age-dependent genes or genome-wide association study (GWAS) on delta age, combined into distinct polygenic risk scores (PRScis-eQTL and PRSGWAS), and tested for predicting brain disorders or pathology in independent postmortem expression datasets and clinical cohorts. In these validation datasets, molecular ages, defined by 68 and 76 age-related genes for two brain regions respectively, were positively correlated with chronological ages (r = 0.88/0.91), elevated in bipolar disorder (BP) and schizophrenia (SCZ), and unchanged in major depressive disorder (MDD). Exploratory analyses in independent clinical datasets show that PRSs were associated with SCZ and MDD diagnostics, and with cognition in SCZ and pathology in Alzheimer's disease (AD). These results suggest that older molecular brain aging is a common feature of severe mental illnesses and neurodegeneration.


Assuntos
Transtorno Depressivo Maior , Transtornos Mentais , Encéfalo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/genética
2.
J Anim Ecol ; 91(5): 996-1009, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332535

RESUMO

Although parasites are ubiquitous in marine ecosystems, predicting the abundance of parasites present within marine ecosystems has proven challenging due to the unknown effects of multiple interacting environmental gradients and stressors. Furthermore, parasites often are considered as a uniform group within ecosystems despite their significant diversity. We aim to determine the potential importance of multiple predictors of parasite abundance in coral reef ecosystems, including reef area, island area, human population density, chlorophyll-a, host diversity, coral cover, host abundance and island isolation. Using a model selection approach within a database of more than 1,200 individual fish hosts and their parasites from 11 islands within the Pacific Line Islands archipelago, we reveal that geographic gradients, including island area and island isolation, emerged as the best predictors of parasite abundance. Life history moderated the relationship; parasites with complex life cycles increased in abundance with increasing island isolation, while parasites with direct life cycles decreased with increasing isolation. Direct life cycle parasites increased in abundance with increasing island area, although complex life cycle parasite abundance was not associated with island area. This novel analysis of a unique dataset indicates that parasite abundance in marine systems cannot be predicted precisely without accounting for the independent and interactive effects of each parasite's life history and environmental conditions.


Assuntos
Parasitos , Animais , Recifes de Corais , Ecossistema , Peixes/parasitologia , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida
3.
Int J Neuropsychopharmacol ; 16(8): 1893-909, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23672886

RESUMO

Major depression is characterized by low mood, a reduced ability to experience pleasure and frequent cognitive, physiological and high anxiety symptoms. It is also the leading cause of years lost due to disability worldwide in women and men, reflecting a lifelong trajectory of recurring episodes, increasing severity and progressive treatment resistance. Yet, antidepressant drugs at best treat only one out of every two patients and have not fundamentally changed since their discovery by chance >50 yr ago. This status quo may reflect an exaggerated emphasis on a categorical disease classification that was not intended for biological research and on oversimplified gene-to-disease models for complex illnesses. Indeed, genetic, molecular and cellular findings in major depression suggest shared risk and continuous pathological changes with other brain-related disorders. So, an alternative is that pathological findings in major depression reflect changes in vulnerable brain-related biological modules, each with their own aetiological factors, pathogenic mechanisms and biological/environment moderators. In this model, pathological entities have low specificity for major depression and instead co-occur, combine and interact within individual subjects across disorders, contributing to the expression of biological endophenotypes and potentially clinical symptom dimensions. Here, we discuss current limitations in depression research, review concepts of gene-to-disease biological scales and summarize human post-mortem brain findings related to pyramidal neurons, γ-amino butyric acid neurons, astrocytes and oligodendrocytes, as prototypical brain circuit biological modules. Finally we discuss nested aetiological factors and implications for dimensional pathology. Evidence suggests that a focus on local cell circuits may provide an appropriate integration point and a critical link between underlying molecular mechanisms and neural network dysfunction in major depression.


Assuntos
Encéfalo/patologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/fisiopatologia , Rede Nervosa/patologia , Feminino , Humanos , Masculino
4.
Emerg Top Life Sci ; 6(1): 57-65, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35258079

RESUMO

Predation is ubiquitous on coral reefs. Among the most charismatic group of reef predators are the top predatory fishes, including sharks and large-bodied bony fishes. Despite the threat presented by top predators, data describing their realized effects on reef community structure and functioning are challenging to produce. Many innovative studies have capitalized on natural experimental conditions to explore predator effects on reefs. Gradients in predator density have been created by spatial patterning of fisheries management. Evidence of prey release has been observed across some reefs, namely that potential prey increase in density when predator density is reduced. While such studies search for evidence of prey release among broad groups or guilds of potential prey, a subset of studies have sought evidence of release at finer population levels. We find that some groups of fishes are particularly vulnerable to the effects of predators and more able to capitalize demographically when predator density is reduced. For example, territorial damselfish appear to realize reliable population expansion with the reduction in predator density, likely because their aggressive, defensive behavior makes them distinctly vulnerable to predation. Relatedly, individual fishes that suffer from debilitating conditions, such as heavy parasite loads, appear to realize relatively stronger levels of prey release with reduced predator density. Studying the effects of predators on coral reefs remains a timely pursuit, and we argue that efforts to focus on the specifics of vulnerability to predation among potential prey and other context-specific dimensions of mortality hold promise to expand our knowledge.


Assuntos
Recifes de Corais , Tubarões , Animais , Pesqueiros , Peixes , Comportamento Predatório
5.
Ecol Evol ; 12(7): e9084, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813930

RESUMO

Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly. Here, we introduce a novel approach to estimating the component of FMR associated with voluntary activity (i.e., the field active MR [ AM R field ] ). Our approach combines laboratory-based respirometry, swimming speeds, and field-based stereo-video systems to estimate the activity of individuals. We exemplify our approach by focusing on six coral reef fish species, for which we quantified standard MR and maximum MR (SMR and MMR, respectively) in the laboratory, and body sizes and swimming speeds in the field. Based on the relationships between MR, body size, and swimming speeds, we estimate that the activity scope (i.e., the ratio between AM R field and SMR) varies from 1.2 to 3.2 across species and body sizes. Furthermore, we illustrate that the scaling exponent for AM R field varies across species and can substantially exceed the widely assumed value of 0.75 for SMR. Finally, by scaling organismal AM R field estimates to the assemblage level, we show the potential effect of this variability on community metabolic demand. Our approach may improve our ability to estimate elemental fluxes mediated by a critically important group of aquatic animals through a non-destructive, widely applicable technique.

6.
Ecol Evol ; 10(7): 3413-3423, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273998

RESUMO

AIM: Identification of the processes that generate and maintain species diversity within the same region can provide insight into biogeographic patterns at broader spatiotemporal scales. Hawkfishes in the genus Paracirrhites are a unique taxon to explore with respect to niche differentiation, exhibiting diagnostic differences in coloration, and an apparent center of distribution outside of the Indo-Malay-Philippine (IMP) biodiversity hotspot for coral reef fishes. Our aim is to use next-generation sequencing methods to leverage samples of a taxon at their center of maximum diversity to explore phylogenetic relationships and a possible mechanism of coexistence. LOCATION: Flint Island, Southern Line Islands, Republic of Kiribati. METHODS: A comprehensive review of museum records, the primary literature, and unpublished field survey records was undertaken to determine ranges for four "arc-eye" hawkfish species in the Paracirrhites species complex and a potential hybrid. Fish from four Paracirrhites species were collected from Flint Island in the Southern Line Islands, Republic of Kiribati. Hindgut contents were sequenced, and subsequent metagenomic analyses were used to assess the phylogenetic relatedness of the host fish, the microbiome community structure, and prey remains for each species. RESULTS: Phylogenetic analyses conducted with recovered mitochondrial genomes revealed clustering of P. bicolor with P. arcatus and P. xanthus with P. nisus, which were unexpected on the basis of previous morphological work in this species complex. Differences in taxonomic composition of gut microbial communities and presumed prey remains indicate likely separation of foraging niches. MAIN CONCLUSIONS: Our findings point toward previously unidentified relationships in this cryptic species complex at its proposed center of distribution. The three species endemic to the Polynesian province (P. nisus, P. xanthus, and P. bicolor) cluster separately from the more broadly distributed P. arcatus on the basis of relative abundance of metazoan sequences in the gut (presumed prey remains). Discordance between gut microbial communities and phylogeny of the host fish further reinforce the hypothesis of niche separation.

7.
Front Pharmacol ; 7: 446, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920723

RESUMO

Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted "α5-PAM"), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as "behavioral emotionality") across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

8.
Front Psychol ; 6: 1377, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441752

RESUMO

The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of accelerated aging.

9.
Conserv Physiol ; 3(1): cov005, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293690

RESUMO

Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.

10.
Mol Neuropsychiatry ; 1(1): 1-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26213687

RESUMO

Genome-wide expression and genotyping technologies have uncovered the genetic bases of complex diseases at unprecedented rates; However despite its heavy burden and high prevalence, the molecular characterization of major depressive disorder (MDD) has lagged behind. Transcriptome studies report multiple brain disturbances but are limited by small sample sizes. Genome-wide association studies (GWAS) report weak results but suggest overlapping genetic risk with other neuropsychiatric disorders. We performed systematic molecular characterization of altered brain function in MDD, using meta-analysis of differential expression in eight gene array studies in three corticolimbic brain regions in 101 subjects. The identified "metaA-MDD" genes suggest altered neurotrophic support, brain plasticity and neuronal signaling in MDD. Notably, metaA-MDD genes display low connectivity and hubness in coexpression networks, and uniform genomic distribution, consistent with diffuse polygenic mechanisms. We next integrated these findings with results from over 1800 published GWAS and show that genetic variations nearby metaA-MDD genes predict greater risk for neuropsychiatric disorders and notably for age-related phenotypes, but not for other medical illnesses, including those frequently co-morbid with depression, or body characteristics. Collectively, the intersection of unbiased investigations of gene function (transcriptome) and structure (GWAS) provides novel leads to investigate molecular mechanisms of MDD and suggest common biological pathways between depression, other neuropsychiatric diseases, and brain aging.

11.
J Adv Nurs ; 50(3): 235-43, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15811102

RESUMO

AIM: This paper reports a study identifying the criteria chosen by nurses to evaluate whether to use research in practice. This work is part of a larger project on the process of research use by nurses. BACKGROUND: Prescriptive models of research utilization direct practitioners to evaluate a range of criteria to assess the fit of the research to current practice. Criteria relating to the research, task and nursing context are specified, but it is not known whether nurses use these criteria in practice. METHOD: Three different groups of nurse specialists from a number of health care providers in the North West of England were studied. The specialists were involved in a series of meetings at a local university to construct evidence-based policy recommendations for practice. The discussion was analysed to identify the evaluation criteria they used to assess what should be done in the practical setting. FINDINGS: Three sets of evaluative criteria were identified relating to the research, the task and the fit of the task with the nursing context, and included relevance and quality of the research, effectiveness, practicality, effort and the impact of the task on client and staff, feasibility and fit with the status quo, and the availability of nursing control and feedback from practice. Criteria were domain-, task- and context-specific. CONCLUSIONS: Three frames of reference for decisions relating to the use of research are identified: the debate between efficiency and effectiveness in health care, the difficulties of risk management and the responsibility for risk, and research use as a strategy for control in contested arenas. These frames of reference reflect how nurses are judged in a political and organizational context. Attempts to influence research uptake need to take into account how research is perceived and evaluated by practitioners and how it serves their purposes.


Assuntos
Pesquisa em Enfermagem/normas , Asma/enfermagem , Atitude do Pessoal de Saúde , Cateteres de Demora , Pesquisa em Enfermagem Clínica , Difusão de Inovações , Retroalimentação , Humanos , Infusões Intravenosas/enfermagem , Papel do Profissional de Enfermagem/psicologia , Enfermeiras e Enfermeiros/psicologia , Prática Profissional/normas , Autocuidado , Especialização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA