Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(4): 1356-1366, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34873825

RESUMO

BACKGROUND: Western corn rootworm (WCR; Diabrotica virgifera virgifera) field-evolved resistance to transgenic maize expressing the Cry3Bb1 protein derived from Bacillus thuringiensis (Bt) has been confirmed across the United States Corn Belt. Although use of pyramided hybrids expressing Cry3Bb1 + Cry34/35Ab1 has increased in recent years to mitigate existing WCR Bt resistance, susceptibility of Nebraska WCR populations to this rootworm-Bt pyramid has not been assessed. Plant-based bioassays were used to characterize the susceptibility of WCR populations to Cry3Bb1 and Cry3Bb1 + Cry34/35Ab1 maize. Populations were collected from areas of northeastern Nebraska with a history of planting Bt maize that expressed Cry3Bb1 and Cry34/35Ab1. RESULTS: Significant differences in mean corrected survival among populations within Bt hybrids indicated a mosaic of WCR susceptibility to Cry3Bb1 + Cry34/35Ab1 and Cry3Bb1 maize occurred in the landscape. All field populations exhibited some level of resistance to one or both Bt hybrids when compared to susceptible laboratory control populations in bioassays. Most WCR populations exhibited incomplete resistance to Cry3Bb1 + Cry34/35Ab1 maize (92%) and complete resistance to Cry3Bb1 maize (79%). CONCLUSION: The present study confirms the first cases of field-evolved resistance to Cry3Bb1 + Cry34/35Ab1 maize in Nebraska and documents a landscape-wide WCR Cry3Bb1 resistance pattern in areas characterized by long-term continuous maize production and associated planting of Cry3Bb1 hybrids. Use of a multi-tactic integrated pest management approach is needed in areas of continuous maize production to slow or mitigate resistance evolution to Bt maize. © 2021 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Besouros/genética , Endotoxinas/genética , Endotoxinas/farmacologia , Resistência a Inseticidas/genética , Larva/genética , Nebraska , Plantas Geneticamente Modificadas/genética , Zea mays/genética
2.
PLoS One ; 13(7): e0200156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969492

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte, has evolved resistance to transgenic maize, Zea maize L., that produces the insecticidal protein Cry3Bb1, which is derived from the bacterium Bacillus thuringiensis. We hypothesized that the level of Cry3Bb1 resistance in populations of western corn rootworm could be influenced by farming practices. To test this hypothesis, we evaluated the effect of field history on resistance to Cry3Bb1 maize by western corn rootworm. In 2013 and 2014, rootworm adults were collected from the four types of maize fields: 1) current problem fields, 2) past problem fields, 3) rotated maize fields, and 4) continuous maize fields. Those field populations along with seven Bt-susceptible control populations were tested for Cry3Bb1 resistance with both plant-based and diet-based bioassays. All field populations were resistant to Cry3Bb1 regardless of field history, however, some variation in the degree of resistance was found. For all categories of field populations, larval survivorship on Cry3Bb1 maize was significantly higher than control populations, and did not differ from survival on non-Bt maize. Evidence of resistance to Cry3Bb1 maize in plant-based bioassays was further supported by diet-based bioassays and we found a positive relationship between LC50 values from diet-based bioassays and the larval survivorship in plant-based bioassays. This study provides evidence of Cry3Bb1 resistance throughout the agricultural landscape studied, irrespective of the field history, and highlights the need for improved resistance management approaches, such as better use of integrated pest management to better delay pest resistance.


Assuntos
Besouros , Produção Agrícola , Endotoxinas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Endotoxinas/metabolismo , Resistência a Inseticidas , Iowa , Larva , Plantas Geneticamente Modificadas/metabolismo
3.
Pest Manag Sci ; 74(11): 2450-2459, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29575759

RESUMO

BACKGROUND: Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). RESULTS: The order of compound concentrations needed to invoke a specific effect intensity (EC50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. CONCLUSION: Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry.


Assuntos
Clorpirifos/farmacologia , Besouros/efeitos dos fármacos , Ciclopropanos/farmacologia , Guanidinas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Animais , Besouros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Raízes de Plantas , Testes de Toxicidade Aguda , Zea mays
4.
Pest Manag Sci ; 72(11): 2136-2145, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26834068

RESUMO

BACKGROUND: CO2 is known as an attractant for many soil-dwelling pests. To implement an attract-and-kill strategy for soil pest control, CO2 -emitting formulations need to be developed. The aim of the present work was to develop a slow-release bead system in order to bridge the gap between application and hatching of western corn rootworm larvae. RESULTS: We compared different Ca-alginate beads containing Saccharomyces cerevisiae for their potential to release CO2 over a period of several weeks. The addition of starch improved CO2 release, resulting in significantly higher CO2 concentrations in soil for at least 4 weeks. The missing amylase activity was compensated for either by microorganisms present in the soil or by coencapsulation of Beauveria bassiana. Formulations containing S. cerevisiae, starch and B. bassiana were attractive for western corn rootworm larvae within the first 4 h following exposure; however, when considering the whole testing period, the maize root systems remained more attractive for the larvae. CONCLUSION: Coencapsulation of S. cerevisiae, starch and B. bassiana is a promising approach for the development of attractive formulations for soil applications. For biological control strategies, the attractiveness needs to be increased by phagostimuli to extend contact between larvae and the entomopathogenic fungus growing out of these formulations. © 2016 Society of Chemical Industry.


Assuntos
Beauveria/química , Dióxido de Carbono/metabolismo , Besouros , Controle de Insetos/métodos , Saccharomyces cerevisiae/química , Amido/química , Animais , Quimiotaxia , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Larva/fisiologia , Controle Biológico de Vetores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA