Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 45(8): e2200237, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246937

RESUMO

Meiotic recombination is one of the main sources of genetic variation, a fundamental factor in the evolutionary adaptation of sexual eukaryotes. Yet, the role of variation in recombination rate and other recombination features remains underexplored. In this review, we focus on the sensitivity of recombination rates to different extrinsic and intrinsic factors. We briefly present the empirical evidence for recombination plasticity in response to environmental perturbations and/or poor genetic background and discuss theoretical models developed to explain how such plasticity could have evolved and how it can affect important population characteristics. We highlight a gap between the evidence, which comes mostly from experiments with diploids, and theory, which typically assumes haploid selection. Finally, we formulate open questions whose solving would help to outline conditions favoring recombination plasticity. This will contribute to answering the long-standing question of why sexual recombination exists despite its costs, since plastic recombination may be evolutionary advantageous even in selection regimes rejecting any non-zero constant recombination.


Assuntos
Eucariotos , Recombinação Genética , Estudos Prospectivos , Meiose/genética , Evolução Biológica , Seleção Genética
2.
Heredity (Edinb) ; 127(3): 278-287, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163036

RESUMO

Environmental seasonality is a potent evolutionary force, capable of maintaining polymorphism, promoting phenotypic plasticity and causing bet-hedging. In Drosophila, environmental seasonality has been reported to affect life-history traits, tolerance to abiotic stressors and immunity. Oscillations in frequencies of alleles underlying fitness-related traits were also documented alongside SNPs across the genome. Here, we test for seasonal changes in two recombination characteristics, crossover rate and crossover interference, in a natural D. melanogaster population from India using morphological markers of the three major chromosomes. We show that winter flies, collected after the dry season, have significantly higher desiccation tolerance than their autumn counterparts. This difference proved to hold also for hybrids with three independent marker stocks, suggesting its genetic rather than plastic nature. Significant between-season changes are documented for crossover rate (in 9 of 13 studied intervals) and crossover interference (in four of eight studied pairs of intervals); both single and double crossovers were usually more frequent in the winter cohort. The winter flies also display weaker plasticity of both recombination characteristics to desiccation. We ascribe the observed differences to indirect selection on recombination caused by directional selection on desiccation tolerance. Our findings suggest that changes in recombination characteristics can arise even after a short period of seasonal adaptation (~8-10 generations).


Assuntos
Drosophila melanogaster , Drosophila , Adaptação Fisiológica , Animais , Drosophila melanogaster/genética , Recombinação Genética , Estações do Ano
3.
Genetica ; 147(3-4): 291-302, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240599

RESUMO

Meiotic recombination is evolutionarily ambiguous, as being associated with both benefits and costs to its bearers, with the resultant dependent on a variety of conditions. While existing theoretical models explain the emergence and maintenance of recombination, some of its essential features remain underexplored. Here we focus on one such feature, recombination plasticity, and test whether recombination response to stress is fitness-dependent. We compare desiccation stress effects on recombination rate and crossover interference in chromosome 3 between desiccation-sensitive and desiccation-tolerant Drosophila lines. We show that relative to desiccation-tolerant genotypes, desiccation-sensitive genotypes exhibit a significant segment-specific increase in single- and double-crossover frequencies across the pericentromeric region of chromosome 3. Significant changes (relaxation) in crossover interference were found for the interval pairs flanking the centromere and extending to the left arm of the chromosome. These results indicate that desiccation is a recombinogenic factor and that desiccation-induced changes in both recombination rate and crossover interference are fitness-dependent, with a tendency of less fitted individuals to produce more variable progeny. Such dependence may play an important role in the regulation of genetic variation in populations experiencing environmental challenges.


Assuntos
Troca Genética , Drosophila melanogaster/genética , Adaptação Fisiológica/genética , Animais , Centrômero/genética , Dessecação , Ontologia Genética , Aptidão Genética/fisiologia , Variação Genética/fisiologia
4.
Proc Natl Acad Sci U S A ; 113(27): 7584-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339131

RESUMO

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.


Assuntos
Especiação Genética , MicroRNAs/metabolismo , Spalax/genética , Simpatria , Transcriptoma , Animais , Carbonato de Cálcio , Ecossistema , Feminino , Fluxo Gênico , Masculino , Silicatos , Solo , Spalax/metabolismo
5.
BMC Genomics ; 19(Suppl 3): 80, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29504906

RESUMO

BACKGROUND: The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS: A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION: The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.


Assuntos
Pão , Cromossomos de Plantas/genética , Mapeamento Físico do Cromossomo , Triticum/genética , Cromossomos Artificiais Bacterianos/genética , Reação em Cadeia da Polimerase
6.
Plant Cell ; 27(10): 2991-3012, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26452600

RESUMO

In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3(a2/f2) from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 (a2/f2) revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/imunologia , Triticum/genética , Alelos , Sequência de Aminoácidos , Cruzamentos Genéticos , Evolução Molecular , Expressão Gênica , Modelos Genéticos , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia , Triticum/imunologia , Triticum/microbiologia , Virulência
7.
Mol Phylogenet Evol ; 107: 209-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27818264

RESUMO

With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree. AVAILABILITY: A code implementing the features and a README is available at http://research.haifa.ac.il/ssagi/software/convexrecoloring.zip.


Assuntos
Algoritmos , Evolução Biológica , Migração Animal , Animais , Aves/genética , Simulação por Computador , Marcadores Genéticos , Muda , Filogenia , Células Procarióticas/metabolismo
8.
BMC Evol Biol ; 16: 177, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590526

RESUMO

BACKGROUND: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). RESULTS: We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species' classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. CONCLUSIONS: We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53.


Assuntos
Evolução Biológica , Reparo do DNA , Spalax/genética , Proteína Supressora de Tumor p53/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Hipóxia/veterinária , Modelos Moleculares , Neoplasias/genética , Neoplasias/veterinária , Oxigênio/metabolismo , Alinhamento de Sequência , Spalax/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
9.
BMC Plant Biol ; 16 Suppl 1: 8, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26821813

RESUMO

BACKGROUND: Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS: The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS: We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.


Assuntos
Cromossomos de Plantas , Triticum/genética , Adaptação Fisiológica , Mapeamento Cromossômico , DNA de Plantas , Genes de Plantas , Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA , Transcrição Gênica , Triticum/crescimento & desenvolvimento
10.
Plant Physiol ; 164(1): 412-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24243933

RESUMO

Barley (Hordeum vulgare) is an important cereal crop and a model species for Triticeae genomics. To lay the foundation for hierarchical map-based sequencing, a genome-wide physical map of its large and complex 5.1 billion-bp genome was constructed by high-information content fingerprinting of almost 600,000 bacterial artificial chromosomes representing 14-fold haploid genome coverage. The resultant physical map comprises 9,265 contigs with a cumulative size of 4.9 Gb representing 96% of the physical length of the barley genome. The reliability of the map was verified through extensive genetic marker information and the analysis of topological networks of clone overlaps. A minimum tiling path of 66,772 minimally overlapping clones was defined that will serve as a template for hierarchical clone-by-clone map-based shotgun sequencing. We integrated whole-genome shotgun sequence data from the individuals of two mapping populations with published bacterial artificial chromosome survey sequence information to genetically anchor the physical map. This novel approach in combination with the comprehensive whole-genome shotgun sequence data sets allowed us to independently validate and improve a previously reported physical and genetic framework. The resources developed in this study will underpin fine-mapping and cloning of agronomically important genes and the assembly of a draft genome sequence.


Assuntos
Hordeum/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
Anim Genet ; 43 Suppl 1: 36-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22742501

RESUMO

In this paper, we review some approaches for QTL mapping developed by our research group in collaboration with, following the recommendation of, or under inspiration of Moshe Soller. Specifically, we explain at a simple intuitive level the main principles and ideas of: (a) QTL mapping by fractioned DNA pooling, (b) increasing the detection power of QTL mapping (in the case of individual genotyping) by multiple-trait analysis, and (c) the role of variance-covariance effects in QTL mapping. On each of these themes we had long and deep discussions with Soller on the statistical aspects of the proposed procedures. We hope that together we made important contributions towards making QTL mapping procedures easier and more effective.


Assuntos
Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Animais , Intervalos de Confiança , Genótipo , Modelos Genéticos , Análise de Sequência de DNA
12.
Pathogens ; 10(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34358051

RESUMO

Antagonistic interactions and co-evolution between a host and its parasite are known to cause oscillations in the population genetic structure of both species (Red Queen dynamics). Potentially, such oscillations may select for increased sex and recombination in the host, although theoretical models suggest that this happens under rather restricted values of selection intensity, epistasis, and other parameters. Here, we explore a model in which the diploid parasite succeeds to infect the diploid host only if their phenotypes at the interaction-mediating loci match. Whenever regular oscillations emerge in this system, we test whether plastic, pathogen-inducible recombination in the host can be favored over the optimal constant recombination. Two forms of the host recombination dependence on the parasite pressure were considered: either proportionally to the risk of infection (prevention strategy) or upon the fact of infection (remediation strategy). We show that both forms of plastic recombination can be favored, although relatively infrequently (up to 11% of all regimes with regular oscillations, and up to 20% of regimes with obligate parasitism). This happens under either strong overall selection and high recombination rate in the host, or weak overall selection and low recombination rate in the host. In the latter case, the system's dynamics are considerably more complex. The prevention strategy is favored more often than the remediation one. It is noteworthy that plastic recombination can be favored even when any constant recombination is rejected, making plasticity an evolutionary mechanism for the rescue of host recombination.

13.
Pathogens ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832684

RESUMO

In the original article, there was a mistake published in Figure 3 [...].

14.
BMC Bioinformatics ; 11: 584, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118513

RESUMO

BACKGROUND: Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs). RESULTS: To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize. CONCLUSIONS: The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/métodos , Triticum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Análise por Conglomerados , Biologia Computacional/métodos , Biblioteca Gênica , Genoma de Planta , Oryza/genética , Software , Zea mays/genética
15.
Mol Ecol ; 19(1): 121-31, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20002587

RESUMO

Understanding the evolution of sex and recombination, key factors in the evolution of life, is a major challenge in biology. Studies of reproduction strategies of natural populations are important to complement the theoretical and experimental models. Fungi with both sexual and asexual life cycles are an interesting system for understanding the evolution of sex. In a study of natural populations of yeast Saccharomyces cerevisiae, we found that the isolates are heterothallic, meaning their mating type is stable, while the general belief is that natural S. cerevisiae strains are homothallic (can undergo mating-type switching). Mating-type switching is a gene-conversion process initiated by a site-specific endonuclease HO; this process can be followed by mother-daughter mating. Heterothallic yeast can mate with unrelated haploids (amphimixis), or undergo mating between spores from the same tetrad (intratetrad mating, or automixis), but cannot undergo mother-daughter mating as homothallic yeasts can. Sequence analysis of HO gene in a panel of natural S. cerevisiae isolates revealed multiple mutations. Good correspondence was found in the comparison of population structure characterized using 19 microsatellite markers spread over eight chromosomes and the HO sequence. Experiments that tested whether the mating-type switching pathway upstream and downstream of HO is functional, together with the detected HO mutations, strongly suggest that loss of function of HO is the cause of heterothallism. Furthermore, our results support the hypothesis that clonal reproduction and intratetrad mating may predominate in natural yeast populations, while mother-daughter mating might not be as significant as was considered.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genética Populacional , Saccharomyces cerevisiae/genética , Análise por Conglomerados , DNA Fúngico/genética , Diploide , Variação Genética , Genoma Fúngico , Repetições de Microssatélites , Filogenia , Mutação Puntual , Análise de Sequência de DNA
16.
Ecol Evol ; 10(4): 2074-2084, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128139

RESUMO

Recombination's omnipresence in nature is one of the most intriguing problems in evolutionary biology. The question of why recombination exhibits certain general features is no less interesting than that of why it exists at all. One such feature is recombination's fitness dependence (FD). The so far developed population genetics models have focused on the evolution of FD recombination mainly in haploids, although the empirical evidence for this phenomenon comes mostly from diploids. Using numerical analysis of modifier models for infinite panmictic populations, we show here that FD recombination can be evolutionarily advantageous in diploids subjected to purifying selection. We ascribe this advantage to the differential rate of disruption of lower- versus higher-fitness genotypes, which can be manifested in selected systems with at least three loci. We also show that if the modifier is linked to such selected system, it can additionally benefit from modifying this linkage in a fitness-dependent manner. The revealed evolutionary advantage of FD recombination appeared robust to crossover interference within the selected system, either positive or negative. Remarkably, FD recombination was often favored in situations where any constant nonzero recombination was evolutionarily disfavored, implying a relaxation of the rather strict constraints on major parameters (e.g., selection intensity and epistasis) required for the evolutionary advantage of nonzero recombination formulated by classical models.

17.
J Theor Biol ; 260(3): 438-44, 2009 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-19591846

RESUMO

A novel approach for evaluation of sequence relatedness via a network over the sequence space is presented. This relatedness is quantified by graph theoretical techniques. The graph is perceived as a flow network, and flow algorithms are applied. The number of independent pathways between nodes in the network is shown to reflect structural similarity of corresponding protein fragments. These results provide an appropriate parameter for quantitative estimation of such relatedness, as well as reliability of the prediction. They also demonstrate a new potential for sequence analysis and comparison by means of the flow network in the sequence space.


Assuntos
Sequência de Aminoácidos , Modelos Químicos , Proteínas/química , Algoritmos , Animais , Biologia Computacional/métodos , Bases de Dados de Proteínas , Condutividade Elétrica , Fragmentos de Peptídeos/química , Análise de Sequência de Proteína/métodos
18.
J Hered ; 100(4): 432-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19321630

RESUMO

We examined the genetic diversity and divergence of Ricotia lunaria, a family relative species of Arabidopsis thaliana, sampled from 6 stations on 2 opposing slopes, the south-facing slope ("African" or AS) and north-facing slope ("European" or ES), separated on average by 200 m, at "Evolution Canyon," Lower Nahal Oren, Mount Carmel, Israel, along a transect presenting sharply differing microclimates. The density of R. lunaria populations was slope specific: a higher density and smaller plants were observed on the AS. In addition, the density was positively correlated with annual plant cover. The interslope and intraslope genetic diversities of R. lunaria populations were examined using the amplified fragment length polymorphism (AFLP) technique with 5 primer pairs. Ricotia lunaria populations inhabiting the ES and AS differed, and among the 468 scored loci, 304 (65%) were polymorphic (at P >or= 0.05 level). Polymorphism values obtained for AS and ES populations were similar (52% vs. 56%), but different loci were polymorphic in different populations; 40% of polymorphic loci were identical on both the ES and AS, 16% were polymorphic for the ES only, and 12% were polymorphic only for the AS. The AFLP results grouped the analyzed genotypes into 2 distinct clusters: one cluster included the plants belonging to the AS and the other included ES plants. The unbiased estimate of Nei genetic distances (D) indicated significantly higher interslope (D = 0.124 +/- 0.011) than intraslope (D = 0.076 +/- 0.015) differences (P < 0.001 in t-test). Correspondingly, mean intraslope gene flow was significantly higher than the interslope gene flow (2.9 +/- 0.6 vs. 1.9 +/- 0.2). Natural selection appears to adaptively diverge the plant ecotypes on the opposite slope, both phenotypically and genotypically. This includes significant divergence in flowering time likely to initiate incipient sympatric speciation.


Assuntos
Biodiversidade , Brassicaceae/genética , Variação Genética , Estresse Fisiológico/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Evolução Biológica , Genes de Plantas , Israel , Microclima , Filogenia , Estresse Fisiológico/genética
19.
Sci Rep ; 8(1): 4671, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549310

RESUMO

Animals living at high altitudes have evolved distinct phenotypic and genotypic adaptations against stressful environments. We studied the adaptive patterns of altitudinal stresses on transcriptome turnover in subterranean plateau zokors (Myospalax baileyi) in the high-altitude Qinghai-Tibetan Plateau. Transcriptomes of zokors from three populations with distinct altitudes and ecologies (Low: 2846 m, Middle: 3282 m, High: 3,714 m) were sequenced and compared. Phylogenetic and principal component analyses classified them into three divergent altitudinal population clusters. Genetic polymorphisms showed that the population at H, approaching the uppermost species boundary, harbors the highest genetic polymorphism. Moreover, 1056 highly up-regulated UniGenes were identified from M to H. Gene ontologies reveal genes like EPAS1 and COX1 were overexpressed under hypoxia conditions. EPAS1, EGLN1, and COX1 were convergent in high-altitude adaptation against stresses in other species. The fixation indices (F ST and G ST )-based outlier analysis identified 191 and 211 genes, highly differentiated among L, M, and H. We observed adaptive transcriptome changes in Myospalax baileyi, across a few hundred meters, near the uppermost species boundary, regardless of their relatively stable underground burrows' microclimate. The highly variant genes identified in Myospalax were involved in hypoxia tolerance, hypercapnia tolerance, ATP-pathway energetics, and temperature changes.


Assuntos
Adaptação Fisiológica , Perfilação da Expressão Gênica/métodos , Muridae/classificação , Polimorfismo Genético , Altitude , Animais , Hipóxia Celular , Evolução Molecular , Regulação da Expressão Gênica , Muridae/genética , Muridae/fisiologia , Filogenia , Análise de Componente Principal , Análise de Sequência de RNA , Tibet
20.
Nat Commun ; 9(1): 3735, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282993

RESUMO

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/fisiologia , Animais , Mapeamento Cromossômico , Evolução Molecular , Hordeum/genética , Janus Quinases/genética , Mutagênese , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA