Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R423-R432, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602386

RESUMO

Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.


Assuntos
Diabetes Mellitus Tipo 2 , Deficiências de Ferro , Adulto , Humanos , Feminino , Gravidez , Animais , Ratos , Insulina , Transcriptoma , Hipocampo , Ferro , Alvo Mecanístico do Complexo 2 de Rapamicina
2.
Headache ; 57 Suppl 2: 64-75, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28485846

RESUMO

This article reviews material presented at the 2016 Scottsdale Headache Symposium. This presentation provided scientific results and rationale for the use of intranasal oxytocin for the treatment of migraine headache. Results from preclinical experiments are reviewed, including in vitro experiments demonstrating that trigeminal ganglia neurons possess oxytocin receptors and are inhibited by oxytocin. Furthermore, most of these same neurons contain CGRP, the release of which is inhibited by oxytocin. Results are also presented which demonstrate that nasal oxytocin inhibits responses of trigeminal nucleus caudalis neurons to noxious stimulation using either noxious facial shock or nitroglycerin infusion. These studies led to testing the analgesic effect of intranasal oxytocin in episodic migraineurs-studies which did not meet their primary endpoint of pain relief at 2 h, but which were highly informative and led to additional rat studies wherein inflammation was found to dramatically upregulate the number of oxytocin receptors available on trigeminal neurons. This importance of inflammation was supported by a series of in vivo rat behavioral studies, which demonstrated a clear craniofacial analgesic effect when a pre-existing inflammatory injury was present. The significance of inflammation was further solidified by a small single-dose clinical study, which showed analgesic efficacy that was substantially stronger in chronic migraine patients that had not taken an anti-inflammatory drug within 24 h of oxytocin dosing. A follow-on open label study examining effects of one month of intranasal oxytocin dosing did show a reduction in pain, but a more impressive decrease in the frequency of headaches in both chronic and high frequency episodic migraineurs. This study led to a multicountry double blind, placebo controlled study studying whether, over 2 months of dosing, "as needed" dosing of intranasal oxytocin by chronic and high frequency migraineurs would reduce the frequency of their headaches compared to a 1-month baseline period. This study failed to meet its primary endpoint, due to an extraordinarily high placebo rate in the country of most of the patients (Chile), but was also highly informative, showing strong results in other countries and strong post hoc indications of efficacy. The results provide a strong argument for further development of intranasal oxytocin for migraine prophylaxis.


Assuntos
Transtornos de Enxaqueca/prevenção & controle , Ocitócicos/administração & dosagem , Ocitocina/administração & dosagem , Administração Intranasal , Animais , Humanos , Gânglio Trigeminal/efeitos dos fármacos
3.
Cephalalgia ; 36(10): 943-50, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26590611

RESUMO

AIMS: Our studies investigated the location of oxytocin receptors in the peripheral trigeminal sensory system and determined their role in trigeminal pain. METHODS: Oxytocin receptor expression and co-localization with calcitonin gene-related peptide was investigated in rat trigeminal ganglion using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the effects of facial electrocutaneous stimulation and adjuvant-induced inflammation of the temporomandibular joint on oxytocin receptor expression in the trigeminal ganglion. Finally, the effects of oxytocin on capsaicin-induced calcitonin gene-related peptide release from dural nociceptors were investigated using isolated rat dura mater. RESULTS: Oxytocin receptor immunoreactivity was present in rat trigeminal neurons. The vast majority of oxytocin receptor immunoreactive neurons co-expressed calcitonin gene-related peptide. Both electrocutaneous stimulation and adjuvant-induced inflammation led to a rapid upregulation of oxytocin receptor protein expression in trigeminal ganglion neurons. Oxytocin significantly and dose-dependently decreased capsaicin-induced calcitonin gene-related peptide release from dural nociceptors. CONCLUSION: Oxytocin receptor expression in calcitonin gene-related peptide containing trigeminal ganglion neurons, and the blockade of calcitonin gene-related peptide release from trigeminal dural afferents suggests that activation of these receptors may provide therapeutic benefit in patients with migraine and other primary headache disorders.


Assuntos
Transtornos da Cefaleia/metabolismo , Nociceptores/metabolismo , Receptores de Ocitocina/biossíntese , Gânglio Trigeminal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/biossíntese , Peptídeo Relacionado com Gene de Calcitonina/genética , Regulação da Expressão Gênica , Transtornos da Cefaleia/genética , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/análise , Receptores de Ocitocina/genética , Resultado do Tratamento , Gânglio Trigeminal/química
4.
Pharm Res ; 30(10): 2475-84, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23135822

RESUMO

One of the most challenging problems facing modern medicine is how to deliver a given drug to a specific target at the exclusion of other regions. For example, a variety of compounds have beneficial effects within the central nervous system (CNS), but unwanted side effects in the periphery. For such compounds, traditional oral or intravenous drug delivery fails to provide benefit without cost. However, intranasal delivery is emerging as a noninvasive option for delivering drugs to the CNS with minimal peripheral exposure. Additionally, this method facilitates the delivery of large and/or charged therapeutics, which fail to effectively cross the blood-brain barrier (BBB). Thus, for a variety of growth factors, hormones, neuropeptides and therapeutics including insulin, oxytocin, orexin, and even stem cells, intranasal delivery is emerging as an efficient method of administration, and represents a promising therapeutic strategy for the treatment of diseases with CNS involvement, such as obesity, Alzheimer's disease, Parkinson's disease, Huntington's disease, depression, anxiety, autism spectrum disorders, seizures, drug addiction, eating disorders, and stroke.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Administração Intranasal , Animais , Doenças do Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos/efeitos adversos , Humanos
5.
J Neurosci ; 31(24): 8894-904, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677173

RESUMO

Despite extensive research to develop an effective neuroprotective strategy for the treatment of ischemic stroke, therapeutic options remain limited. Although caspase-dependent death is thought to play a prominent role in neuronal injury, direct evidence of active initiator caspases in stroke and the functional relevance of this activity have not previously been shown. Using an unbiased caspase-trapping technique in vivo, we isolated active caspase-9 from ischemic rat brain within 1 h of reperfusion. Pathogenic relevance of active caspase-9 was shown by intranasal delivery of a novel cell membrane-penetrating highly specific inhibitor for active caspase-9 at 4 h postreperfusion (hpr). Caspase-9 inhibition provided neurofunctional protection and established caspase-6 as its downstream target. The temporal and spatial pattern of expression demonstrates that neuronal caspase-9 activity induces caspase-6 activation, mediating axonal loss by 12 hpr followed by neuronal death within 24 hpr. Collectively, these results support selective inhibition of these specific caspases as an effective therapeutic strategy for stroke.


Assuntos
Caspase 6/fisiologia , Inibidores Enzimáticos/uso terapêutico , Infarto da Artéria Cerebral Média , Proteínas Inibidoras de Apoptose/uso terapêutico , Doenças do Sistema Nervoso , Neurônios/patologia , Administração Intranasal , Aldeídos/farmacologia , Animais , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/etiologia , Caspase 6/deficiência , Caspase 9/metabolismo , Inibidores de Caspase , Inibidores de Cisteína Proteinase/uso terapêutico , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Técnicas In Vitro , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/uso terapêutico , Ratos , Ratos Wistar , Fatores de Tempo
6.
Neurobiol Dis ; 45(2): 804-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22115941

RESUMO

As a thrombolytic agent, application of recombinant tissue plasminogen activator (tPA) to ischemic stroke is limited by the narrow time window and side effects on brain edema and hemorrhage. This study examined whether tPA, administered by intranasal delivery directly targeting the brain and spinal cord, provides therapeutic benefit during the subacute phase after stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Animals were treated intranasally with saline, 60 µg or 600 µg recombinant human tPA at 7 and 14days after MCAo (n=8/group), respectively. An adhesive-removal test and a foot-fault test were used to monitor functional recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticorubral tract (CRT) and the corticospinal tract (CST). Naive rats (n=6) were employed as normal control. Animals were euthanized 8 weeks after stroke. Compared with saline treated animals, significant functional improvements were evident in rats treated with 600 µg tPA (p<0.05), but not in 60 µg tPA treated rats. Furthermore, 600 µg tPA treatment significantly enhanced both CRT and CST sprouting originating from the contralesional cortex into the denervated side of the red nucleus and cervical gray matter compared with control group (p<0.01), respectively. The behavioral outcomes were highly correlated with CRT and CST axonal remodeling. Our data suggest that delayed tPA intranasal treatment provides therapeutic benefits for neurological recovery after stroke by, at least in part, promoting neuronal remodeling in the brain and spinal cord.


Assuntos
Axônios/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/administração & dosagem , Administração Intranasal , Animais , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Masculino , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/patologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/patologia
7.
Mol Pain ; 8: 3, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22236461

RESUMO

BACKGROUND: Although pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaVα2δ-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects. RESULTS: We used intranasal, intrathecal, and near-nerve chamber forms of delivery of varying concentrations of pregabalin or saline delivered over 14 days in rat models of experimental diabetic peripheral neuropathy and spinal nerve ligation. As well, radiolabelled pregabalin was administered to determine localization with different deliveries. We evaluated tactile allodynia and thermal hyperalgesia at multiple time points, and then analyzed harvested nervous system tissues for molecular and immunohistochemical changes in CaVα2δ-1 protein expression. Both intrathecal and intranasal pregabalin administration at high concentrations relieved NeP behaviors, while near-nerve pregabalin delivery had no effect. NeP was associated with upregulation of CACNA2D1 mRNA and CaVα2δ-1 protein within peripheral nerve, dorsal root ganglia (DRG), and dorsal spinal cord, but not brain. Pregabalin's effect was limited to suppression of CaVα2δ-1 protein (but not CACNA2D1 mRNA) expression at the spinal dorsal horn in neuropathic pain states. Dorsal root ligation prevented CaVα2δ-1 protein trafficking anterograde from the dorsal root ganglia to the dorsal horn after neuropathic pain initiation. CONCLUSIONS: Either intranasal or intrathecal pregabalin relieves neuropathic pain behaviours, perhaps due to pregabalin's effect upon anterograde CaVα2δ-1 protein trafficking from the DRG to the dorsal horn. Intranasal delivery of agents such as pregabalin may be an attractive alternative to systemic therapy for management of neuropathic pain states.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Sistema Nervoso Periférico/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Ligadura , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Neuralgia/complicações , Pregabalina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/patologia , Nervos Espinhais/efeitos dos fármacos , Nervos Espinhais/patologia , Ácido gama-Aminobutírico/administração & dosagem , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/uso terapêutico
8.
Mol Genet Metab ; 106(1): 131-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22420937

RESUMO

Here we provide the first evidence that therapeutic levels of a lysosomal enzyme can bypass the blood-brain barrier following intranasal administration. α-L-iduronidase (IDUA) activity was detected throughout the brains of IDUA-deficient mice following a single intranasal treatment with concentrated Aldurazyme® (laronidase) and was also detected after intranasal treatment with an adeno-associated virus (AAV) vector expressing human IDUA. These results suggest that intranasal routes of delivery may be efficacious in the treatment of lysosomal storage disorders.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central/efeitos dos fármacos , Iduronidase/administração & dosagem , Iduronidase/genética , Mucopolissacaridose I/tratamento farmacológico , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Dependovirus/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/enzimologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/administração & dosagem
9.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35631378

RESUMO

The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.

10.
J Neurosurg ; : 1-10, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36599085

RESUMO

OBJECTIVE: Diffuse midline gliomas, including diffuse intrinsic pontine gliomas (DIPGs), are among the most malignant and devastating childhood brain cancers. Despite aggressive treatment, nearly all children with these tumors succumb to their disease within 2 years of diagnosis. Due to the anatomical location of the tumors within the pons, surgery is not a treatment option, and distribution of most systematically administered drugs is limited by the blood-brain barrier (BBB). New drug delivery systems that bypass the BBB are desperately needed to improve outcomes of DIPG patients. Intranasal delivery (IND) is a practical and noninvasive drug delivery system that bypasses the BBB and delivers the drugs to the brain through the olfactory and trigeminal neural pathways. In this study, the authors evaluated the efficacy of nanoliposomal (LS) irinotecan (CPT-11) and an active metabolite of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38), using IND in DIPG patient-derived xenograft models. METHODS: In vitro responses to LS-CPT-11 and LS-SN-38 in DIPG cells were evaluated with cell viability, colony formation, and apoptosis assays. The cellular uptakes of rhodamine-PE (Rhod)-labeled LS-CPT-11 and LS-SN-38 were analyzed with fluorescence microscopy. Mice bearing DIPG patient-derived xenografts were treated with IND of LS-control (empty liposome), LS-CPT-11, or LS-SN-38 by IND for 4 weeks. In vivo responses were measured for tumor growth by serial bioluminescence imaging and animal subject survival. The concentration of SN-38 in the brainstem tumor administered by IND was determined by liquid chromatography-mass spectrometry (LC-MS). Immunohistochemical analyses of the proliferative and apoptotic responses of in vivo tumor cells were performed with Ki-67 and TUNEL staining. RESULTS: LS-SN-38 inhibited DIPG cell growth and colony formation and increased apoptosis, outperforming LS-CPT-11. Rhod-labeled LS-SN-38 showed intracellular fluorescence signals beginning at 30 minutes and peaking at 24 hours following treatment. LC-MS analysis revealed an SN-38 concentration in the brainstem tumor of 0.66 ± 0.25 ng/ml (5.43% ± 0.31% of serum concentration). IND of LS-SN-38 delayed tumor growth and significantly prolonged animal survival compared with IND of LS-control (p < 0.0001) and LS-CPT-11 (p = 0.003). IND of LS-SN-38 increased the number of TUNEL-positive cells and decreased the Ki-67-positive cells in the brainstem tumor. CONCLUSIONS: This study demonstrates that IND of LS-SN-38 bypasses the BBB and enables efficient and noninvasive drug delivery to the brainstem tumor, providing a promising therapeutic approach for treating DIPG.

11.
Drug Deliv ; 29(1): 1754-1763, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635357

RESUMO

Current literature lacks structured methodologies for analyzing medical technologies' impact from the patient-centered care perspective. This study introduces, applies and validates 'Patient-Centered Care Impact Analysis' (PCIA) as a method for identifying patient-centered care associated demands and expectations for a particular technology and assessing its compliance with these demands. PCIA involves five stages: (1) demand identification, (2) ranking demands' impact magnitude, (3) scoring demand compliance (DC), (4) demand priority (DP) assignment based on impact magnitude and compliance, (5) generating a summative impact priority number (IPN). PCIA was performed as a comparative assessment of two central nervous system (CNS) drug-delivery platforms; SipNose, a novel noninvasive Direct-Nose-to-Brain (DNTB), vs. the standard-of-care invasive intrathecal/intracerebroventricular injection (Invasive I/I). Study participants included a ranking team (RT) without experience with the SipNose technology that based their scoring on experimental data; and a validation team (VT) experienced with the SipNose platform. All had experience with, or knowledge of, InvasiveI/I. Demand identification and impact magnitude were performed by one content and one assessment expert. Each participant assessed each technology's DC. DP scores, IPN's and IPN DNTB:InvasiveI/I ratios were generated for each technology, for each team, based on DC and summative DP scores, respectively. Both teams assigned DNTB higher DC scores, resulting in higher DNTB DP, IPN scores and DNTB:InvasiveI/I IPN ratios. Lack of difference between team assessments of DP and IPN ratio validate PCIA as an assessment tool capable of predicting patient-centered clinical care quality for a new technology. The significant differences between the platforms highlight SipNose's patient-care centered advantages as an effective CNS drug-delivery platform.


Assuntos
Encéfalo , Sistemas de Liberação de Medicamentos , Fármacos do Sistema Nervoso Central , Humanos , Assistência Centrada no Paciente
12.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513737

RESUMO

Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.

13.
Transl Psychiatry ; 11(1): 388, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247185

RESUMO

There is evidence of the therapeutic potential of intranasal oxytocin for the treatment of pain and various psychiatric disorders, however, there is scant evidence that oxytocin reaches the brain. We quantified the concentration and distribution pattern of [125I]-radiolabeled oxytocin in the brains and peripheral tissues of rats after intranasal delivery using gamma counting and autoradiography, respectively. Radiolabel was detected in high concentrations in the trigeminal and olfactory nerves as well as in brain regions along their trajectories. Considerable concentrations were observed in the blood, however, relatively low levels of radiolabel were measured in peripheral tissues. The addition of a mucoadhesive did not enhance brain concentrations. These results provide support for intranasal OT reaching the brain via the olfactory and trigeminal neural pathways. These findings will inform the design and interpretation of clinical studies with intranasal oxytocin.


Assuntos
Transtornos Mentais , Ocitocina , Administração Intranasal , Animais , Encéfalo , Dor , Ratos
14.
Front Mol Neurosci ; 14: 618360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040503

RESUMO

Mucopolysaccharidosis type I (MPS I) is an inherited metabolic disorder caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA). The two current treatments [hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT)], are insufficiently effective in addressing neurologic disease, in part due to the inability of lysosomal enzyme to cross the blood brain barrier. With a goal to more effectively treat neurologic disease, we have investigated the effectiveness of AAV-mediated IDUA gene delivery to the brain using several different routes of administration. Animals were treated by either direct intracerebroventricular (ICV) injection, by intrathecal (IT) infusion into the cerebrospinal fluid, or by intranasal (IN) instillation of AAV9-IDUA vector. AAV9-IDUA was administered to IDUA-deficient mice that were either immunosuppressed with cyclophosphamide (CP), or immunotolerized at birth by weekly injections of human iduronidase. In animals treated by ICV or IT administration, levels of IDUA enzyme ranged from 3- to 1000-fold that of wild type levels in all parts of the microdissected brain. In animals administered vector intranasally, enzyme levels were 100-fold that of wild type in the olfactory bulb, but enzyme expression was close to wild type levels in other parts of the brain. Glycosaminoglycan levels were reduced to normal in ICV and IT treated mice, and in IN treated mice they were normalized in the olfactory bulb, or reduced in other parts of the brain. Immunohistochemical analysis showed extensive IDUA expression in all parts of the brain of ICV treated mice, while IT treated animals showed transduction that was primarily restricted to the hind brain with some sporadic labeling seen in the mid- and fore brain. At 6 months of age, animals were tested for spatial navigation, memory, and neurocognitive function in the Barnes maze; all treated animals were indistinguishable from normal heterozygous control animals, while untreated IDUA deficient animals exhibited significant learning and spatial navigation deficits. We conclude that IT and IN routes are acceptable and alternate routes of administration, respectively, of AAV vector delivery to the brain with effective IDUA expression, while all three routes of administration prevent the emergence of neurocognitive deficiency in a mouse MPS I model.

15.
Mol Pain ; 6: 16, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20236533

RESUMO

BACKGROUND: Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. RESULTS: Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist) and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. CONCLUSIONS: The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state. Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN. These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.


Assuntos
Analgésicos/farmacologia , Agonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Gliose/tratamento farmacológico , Microglia/efeitos dos fármacos , Administração Intranasal , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Biomarcadores/metabolismo , Canabidiol/farmacologia , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Gliose/metabolismo , Gliose/fisiopatologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Injeções Intraperitoneais , Masculino , Camundongos , Microglia/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia , Fosforilação/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Receptores de Canabinoides/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Mol Pharm ; 7(3): 884-93, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20420446

RESUMO

Intranasal delivery has been shown to noninvasively deliver drugs from the nose to the brain in minutes along the olfactory and trigeminal nerve pathways, bypassing the blood-brain barrier. However, no one has investigated whether nasally applied drugs target orofacial structures, despite high concentrations observed in the trigeminal nerve innervating these tissues. Following intranasal administration of lidocaine to rats, trigeminally innervated structures (teeth, temporomandibular joint (TMJ), and masseter muscle) were found to have up to 20-fold higher tissue concentrations of lidocaine than the brain and blood as measured by ELISA. This concentration difference could allow intranasally administered therapeutics to treat disorders of orofacial structures (i.e., teeth, TMJ, and masseter muscle) without causing unwanted side effects in the brain and the rest of the body. In this study, an intranasally administered infrared dye reached the brain within 10 minutes. Distribution of dye is consistent with dye entering the trigeminal nerve after intranasal administration through three regions with high drug concentrations in the nasal cavity: the middle concha, the maxillary sinus, and the choana. In humans the trigeminal nerve passes through the maxillary sinus to innervate the maxillary teeth. Delivering lidocaine intranasally may provide an effective anesthetic technique for a noninvasive maxillary nerve block. Intranasal delivery could be used to target vaccinations and treat disorders with fewer side effects such as tooth pain, TMJ disorder, trigeminal neuralgia, headache, and brain diseases.


Assuntos
Encéfalo/metabolismo , Lidocaína/administração & dosagem , Lidocaína/metabolismo , Mucosa Nasal/metabolismo , Administração Intranasal , Animais , Masculino , Músculo Masseter/metabolismo , Modelos Anatômicos , Ratos , Ratos Sprague-Dawley , Articulação Temporomandibular/metabolismo , Dente/metabolismo , Nervo Trigêmeo/metabolismo
17.
PLoS One ; 15(7): e0236113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687511

RESUMO

Loss of function mutations in the gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to severe neurodevelopmental defects in humans associated with a specific thyroid hormone phenotype manifesting high serum 3,5,3'-triiodothyronine (T3) and low thyroxine (T4) levels. Patients present a paradoxical state of peripheral hyperthyroidism and brain hypothyroidism, this last one most likely arising from impaired thyroid hormone transport across the brain barriers. The administration of thyroid hormones by delivery pathways that bypass the brain barriers, such as the intranasal delivery route, offers the possibility to improve the neurological defects of MCT8-deficient patients. In this study, the thyroid hormones T4 and T3 were administrated intranasally in different mouse models of MCT8 deficiency. We have found that, under the present formulation, intranasal administration of thyroid hormones does not increase the content of thyroid hormones in the brain and further raises the peripheral thyroid hormone levels. Our data suggests intranasal delivery of thyroid hormones is not a suitable therapeutic strategy for MCT8 deficiency, although alternative formulations could be considered in the future to improve the nose-to-brain transport.


Assuntos
Transportadores de Ácidos Monocarboxílicos/deficiência , Simportadores/deficiência , Hormônios Tireóideos/administração & dosagem , Hormônios Tireóideos/farmacologia , Administração Intranasal , Animais , Encéfalo/citologia , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Mutação , Transdução de Sinais/efeitos dos fármacos , Simportadores/genética , Hormônios Tireóideos/sangue
18.
Neurosci Lett ; 714: 134567, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629033

RESUMO

Emerging evidence continues to demonstrate that disrupted insulin signaling and altered energy metabolism may play a key role underpinning pathology in neurodegenerative conditions. Intranasally administered insulin has already shown promise as a memory-enhancing therapy in patients with Alzheimer's and animal models of the disease. Intranasal drug delivery allows for direct targeting of insulin to the brain, bypassing the blood brain barrier and minimizing systemic adverse effects. In this study, we sought to expand upon previous results that show intranasal insulin may also have promise as a Parkinson's therapy. We treated 6-OHDA parkinsonian rats with a low dose (3 IU/day) of insulin and assessed apomorphine induced rotational turns, motor deficits via a horizontal ladder test, and dopaminergic cell survival via stereological counting. We found that insulin therapy substantially reduced motor dysfunction and dopaminergic cell death induced by unilateral injection of 6-OHDA. These results confirm insulin's efficacy within this model, and do so over a longer period after model induction which more closely resembles Parkinson's disease. This study also employed a lower dose than previous studies and utilizes a delivery device, which could lead to an easier transition into human clinical trials as a therapeutic for Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Administração Intranasal , Adrenérgicos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Movimento/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Brain Behav ; 10(3): e01536, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31960628

RESUMO

INTRODUCTION: Intranasal deferoxamine (IN DFO) has been shown to decrease memory loss and have beneficial impacts across several models of neurologic disease and injury, including rodent models of Alzheimer's and Parkinson's disease. METHODS: In order to assess the mechanism of DFO, determine its ability to improve memory from baseline in the absence of a diseased state, and assess targeting ability of intranasal delivery, we treated healthy mice with IN DFO (2.4 mg) or intraperitoneal (IP) DFO and compared behavioral and biochemical changes with saline-treated controls. Mice were treated 5 days/week for 4 weeks and subjected to behavioral tests 30 min after dosing. RESULTS: We found that IN DFO, but not IP DFO, significantly enhanced working memory in the radial arm water maze, suggesting that IN administration is more efficacious as a targeted delivery route to the brain. Moreover, the ability of DFO to improve memory from baseline in healthy mice suggests a non-disease-specific mechanism of memory improvement. IN DFO treatment was accompanied by decreased GSK-3ß activity and increased HIF-1α activity. CONCLUSIONS: These pathways are suspected in DFO's ability to improve memory and perhaps represent a component of the common mechanism through which DFO enacts beneficial change in models of neurologic disease and injury.


Assuntos
Encéfalo/efeitos dos fármacos , Desferroxamina/administração & dosagem , Memória de Curto Prazo/efeitos dos fármacos , Sideróforos/administração & dosagem , Administração Intranasal , Animais , Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos
20.
Cells ; 9(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32089540

RESUMO

The function and regulation of amyloid-beta (Aß) in healthy and diseased liver remains unexplored. Because Aß reduces the integrity of the blood-brain barrier we have examined its potential role in regulating the sinusoidal permeability of normal and cirrhotic liver. Aß and key proteins that generate (beta-secretase 1 and presenilin-1) and degrade it (neprilysin and myelin basic protein) were decreased in human cirrhotic liver. In culture, activated hepatic stellate cells (HSC) internalized Aß more efficiently than astrocytes and HSC degraded Aß leading to suppressed expression of α-smooth muscle actin (α-SMA), collagen 1 and transforming growth factor ß (TGFß). Aß also upregulated sinusoidal permeability marker endothelial NO synthase (eNOS) and decreased TGFß in cultured human liver sinusoidal endothelial cells (hLSEC). Liver Aß levels also correlate with the expression of eNOS in transgenic Alzheimer's disease mice and in human and rodent cirrhosis/fibrosis. These findings suggest a previously unexplored role of Aß in the maintenance of liver sinusoidal permeability and in protection against cirrhosis/fibrosis via attenuation of HSC activation.


Assuntos
Peptídeos beta-Amiloides/uso terapêutico , Fibrose/tratamento farmacológico , Expressão Gênica/genética , Cirrose Hepática/terapia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos beta-Amiloides/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Cirrose Hepática/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA