Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 290(17): 11041-51, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25767113

RESUMO

The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nM but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV-VI of CCR5 with an IC50 of 55 nM. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nM) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nM) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile(198).


Assuntos
Amidas/química , Antagonistas dos Receptores CCR5/química , Modelos Moleculares , Compostos de Amônio Quaternário/química , Receptores CCR5/química , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Macaca , Estrutura Terciária de Proteína , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Transfus Med Hemother ; 40(4): 237-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24179472

RESUMO

Autologous hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with non-Hodgkin's lymphoma and multiple myeloma. The primary source of HSC is from the peripheral blood which requires mobilization from the bone marrow. Current mobilization regimens include cytokines such as G-CSF and/or chemotherapy. However not all patients mobilize enough HSC to proceed to transplant. The chemokine receptor CXCR4 and its ligand CXCL12 are an integral part of the mechanism of HSC retention in the bone marrow niche. The discovery of plerixafor, a selective inhibitor of CXCR4, has provided a new additional means of mobilizing HSC for autologous transplantation. Plerixafor consists of two cyclam rings with a phenylenebis(methylene) linker. It inhibits CXCL12 binding to CXCR4 and subsequent downstream events including chemotaxis. The molecular interactions of plerixafor have been defined indicating a unique binding mode to CXCR4. Plerixafor rapidly mobilizes HSC within hours compared with the multi-day treatment required by G-CSF in mouse, dog and non-human primate. The mobilized cells once transplanted are capable of timely and endurable engraftment. Additionally CXCR4 has been implicated in the pathology of HIV, inflammatory disease and cancer and the pharmacology of plerixafor in various disease models is described.

3.
J Am Chem Soc ; 133(41): 16477-85, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21942640

RESUMO

The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Ureia/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Antagonistas dos Receptores CCR5 , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Mutagênese , Estereoisomerismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
4.
Curr Top Microbiol Immunol ; 341: 173-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20397073

RESUMO

Pharmacological manipulation of CXCR4 has proven clinically useful for mobilization of stem and progenitor cells and in several preclinical models of disease. It is a key component in the localization of leukocytes and stem cells. For patients with multiple myeloma and non-Hodgkin's Lymphoma, treatment with plerixafor, an inhibitor of CXCL12 binding to CXCR4, plus G-CSF mobilizes stem cells for autologous transplantation to a greater degree than the treatment with G-CSF alone, and in some cases when patients could not be mobilized with cytokines, chemotherapy, or the combination. Stem cells from healthy donors mobilized with single agent plerixafor have been used for allogeneic transplantation in acute myelogenous leukemia (AML) patients, although this is still in the early phase of clinical development. Plerixafor is also undergoing evaluation to mobilize tumor cells in patients with AML and chronic lymphocytic leukemia (CLL) to enhance the effectiveness of chemotherapy regimens. Plerixafor's effect on neutrophils may also restore circulating neutrophil counts to normal levels in patients with chronic neutropenias such as in WHIMs syndrome. Other areas where inhibition of CXCR4 may be useful based upon preclinical or clinical data include peripheral vascular disease, autoimmune diseases such as rheumatoid arthritis, pulmonary inflammation, and HIV.


Assuntos
Doenças Hematológicas/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Animais , Benzilaminas , Ensaios Clínicos como Assunto , Ciclamos , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Doenças Hematológicas/imunologia , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Transplante de Células-Tronco
6.
Bioorg Med Chem Lett ; 21(23): 6950-4, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22033460

RESUMO

A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.


Assuntos
Amidas/síntese química , Fármacos Anti-HIV/síntese química , Antagonistas dos Receptores CCR5 , Desenho de Fármacos , HIV-1 , Leucócitos Mononucleares , Amidas/química , Amidas/farmacologia , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cães , Humanos , Concentração Inibidora 50 , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia , Ratos , Replicação Viral/efeitos dos fármacos
7.
Methods Mol Biol ; 552: 153-69, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513648

RESUMO

Chemokines are a family of chemoattractant cytokines involved in leukocyte trafficking, activation, development, and hematopoeisis. Chemokines and their receptors have been implicated in several disease processes, particularly inflammatory and autoimmune disorders and cancer, and are therefore attractive targets for drug development. Chemokine receptors are members of the seven-transmembrane, G protein-coupled receptor (GPCR) family. As such they can be studied using GPCR assays such as ligand binding, G protein activation, and downstream signaling processes such as intracellular calcium flux. In this respect assessing GPCR activation by GTP binding is an important tool to study the early stage of signal transduction. Previously this has been done using the radiolabeled non-hydrolyzable GTP analogue [(35)S]GTPgammaS. In order to avoid the problems involved in working with radioactivity, a new non-radioactive version of the assay has been developed using a europium-labeled GTP analogue in which europium-GTP binding can be assayed using time-resolved fluorescence. We have adapted this assay for chemokine receptors. In this chapter, using the chemokine receptor CXCR4 as an example, we describe the steps for assay optimization. In addition we describe adaptation of this assay for the high-throughput screening of chemokine antagonists.


Assuntos
Membrana Celular/metabolismo , Európio/metabolismo , Guanosina Trifosfato/metabolismo , Leucemia de Células T/metabolismo , Ensaio Radioligante/métodos , Receptores CXCR4/metabolismo , Descoberta de Drogas , Humanos , Receptores CXCR4/análise , Células Tumorais Cultivadas
8.
J Histochem Cytochem ; 67(4): 257-266, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30562126

RESUMO

Chemokines and their receptors have been implicated in cancer biology. The CXCL12/CXCR4 axis is essential for the homing and retention of hematopoietic stem cells in bone marrow niches, and has a significant role in neonatal development. It is also implicated in multiple facets of cancer biology including metastasis, angiogenesis/neo-vasculogenesis, and immune cell trafficking at the tumor microenvironment (TME). Immunohistochemistry (IHC) is an ideal method for investigating involvement of CXCL12 in the TME. Three antibodies were evaluated here for their suitability to stain CXCL12. Both D8G6H and K15C gave apparent specific staining in both lymphoid and tumor tissue, but with converse staining patterns. D8G6H stained cells in the parafollicular zone whereas K15C showed staining of lymphoid cells in the interfollicular zone of tonsil tissue. Using a cell line with high CXCL12 expression, TOV21G, as a positive control, it was found that D8G6H gave strong staining of TOV21G cells whereas no staining was observed with K15C indicating that D8G6H specifically stains CXCL12. Significant staining of CXCL12 in the ovarian TME using tissue microarray was observed using D8G6H. These data demonstrate the importance of antibody characterization for IHC applications, and provide further evidence for the involvement of CXCL12 in ovarian cancer biology.


Assuntos
Anticorpos/análise , Quimiocina CXCL12/análise , Imuno-Histoquímica/métodos , Células A549 , Animais , Anticorpos Monoclonais/análise , Células CACO-2 , Feminino , Células HT29 , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Coelhos , Microambiente Tumoral
9.
Mol Pharmacol ; 74(6): 1485-95, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18768385

RESUMO

CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N'-(1H-benzimidazol-2-ylmethyl)-N'-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with (125)I-stromal-derived factor-1alpha binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.


Assuntos
Aminoquinolinas/farmacologia , Fármacos Anti-HIV/farmacologia , Benzimidazóis/farmacologia , Compostos Heterocíclicos/farmacologia , Piridinas/farmacologia , Receptores CXCR4/antagonistas & inibidores , Aminoquinolinas/metabolismo , Animais , Fármacos Anti-HIV/metabolismo , Benzimidazóis/metabolismo , Benzilaminas , Sítios de Ligação , Ligação Competitiva , Butilaminas , Fusão Celular , Linhagem Celular , Cricetinae , Cricetulus , Ciclamos , Compostos Heterocíclicos/metabolismo , Compostos Heterocíclicos com 1 Anel , Humanos , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Piridinas/metabolismo , Ensaio Radioligante , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
11.
J Med Chem ; 49(17): 5262-72, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913715

RESUMO

The synthesis of four new oxorhenium(V) complexes containing the "3 + 1" mixed-ligand donor set, ReO(SYS)X (where Y = S, py; X = Cl, Br), is described. All of the complexes tested exhibited selectivity for cathepsin B over K. Most notably, compound 6, ReO(SSS-2,2')Br (IC50(cathepsin B) = 1.0 nM), was 260 times more potent against cathepsin B. It was also discovered that complexes containing the same tridentate (SSS) ligand were more potent when the leaving group was bromide versus chloride (e.g., IC50(cathepsin B): ReO(SSS-2,2')Cl (4), 8.8 nM; ReO(SSS-2,2')Br (6), 1.0 nM). Mechanistic studies with cathepsin B showed that both compounds 2 (ReO(SpyS)(SPhOMe-p)) and 4 were active-site-directed. Compound 2 was determined to be a tight-binding, reversible inhibitor, while compound 4 was a time-dependent, slowly reversible inhibitor. The results described in this paper show that the oxorhenium(V) "3 + 1" complexes are potent, selective inhibitors of cathepsin B and have potential for the treatment of cancer.


Assuntos
Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Rênio/química , Sítios de Ligação , Catepsina B/química , Catepsina K , Catepsinas/antagonistas & inibidores , Catepsinas/química , Inibidores de Cisteína Proteinase/química , Humanos , Ligantes , Estrutura Molecular , Compostos Organometálicos/química , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Tempo
12.
Biochem Pharmacol ; 72(5): 588-96, 2006 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-16815309

RESUMO

The chemokine receptor CXCR4 is widely expressed on different cell types, is involved in leukocyte chemotaxis, and is a co-receptor for HIV. AMD3100 has been shown to be a CXCR4 receptor antagonist, and to block HIV infection of T-tropic, X4-using, virus in vitro and in vivo. AMD3100 is an effective mobilizer of hematopoietic stem cells and is being investigated in clinical trials in multiple myeloma and non-Hodgkins lymphoma patients. Using the CCRF-CEM T-cell line that constitutively expresses CXCR4 we confirmed that AMD3100 was an antagonist of SDF-1/CXCL12 ligand binding (IC50=651+/-37 nM). We have also shown that AMD3100 inhibits SDF-1 mediated GTP-binding (IC50=27+/-2.2 nM), SDF-1 mediated calcium flux (IC50=572+/-190 nM), and SDF-1 stimulated chemotaxis (IC50=51+/-17 nM). AMD3100 did not inhibit calcium flux against cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7 when stimulated with their cognate ligands, nor did it inhibit receptor binding of LTB4. AMD3100 did not, on its own, induce a calcium flux in the CCRF-CEM cells, which express multiple GPCRs including CXCR4, CCR4 and CCR7. Furthermore, AMD3100 neither stimulated GTP-binding, an assay for GPCR activation, in CEM cell membranes; nor chemotaxis of CCRF-CEM cells. These data therefore demonstrate that AMD3100 is a specific antagonist of CXCR4, is not cross-reactive with other chemokine receptors, and is not an agonist of CXCR4.


Assuntos
Compostos Heterocíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Benzilaminas , Cálcio/metabolismo , Linhagem Celular , Quimiocina CXCL12 , Quimiocinas CXC/metabolismo , Quimiotaxia/efeitos dos fármacos , Ciclamos , Humanos , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos
13.
Cancer Res ; 62(20): 5930-8, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12384559

RESUMO

Of 14 chemokine receptors investigated, only CXCR4 was expressed on ovarian cancer cells [C. J. Scotton et al., Cancer Res., 61: 4961-4965, 2001]. To further understand the role of this chemokine receptor in ovarian tumor biology, we studied the action of its ligand, CXCL12 (stromal cell-derived factor 1), on the CXCR4-expressing ovarian cancer cell lines IGROV. Ligand stimulation of the CXCR4 receptor resulted in sustained activation of Akt/protein kinase B and biphasic phosphorylation of p44/42 mitogen-activated protein kinase in IGROV. When IGROV cells were cultured under suboptimal conditions, CXCL12 stimulated their in vitro growth, an effect that was abrogated by neutralizing antibodies to CXCR4. This increase in cell number was attributable to stimulation of DNA synthesis, not protection from apoptosis. CXCL12 treatment of IGROV cells also induced mRNA and protein for tumor necrosis factor alpha, a cytokine that is expressed by tumor cells in ovarian cancer biopsies. IGROV cells invaded through Matrigel toward a CXCL12 gradient. Invasion was abrogated by the broad spectrum matrix metalloproteinase and TNFalpha converting enzyme inhibitor Marimastat and was partially inhibited by neutralizing antitumor necrosis factor alpha antibodies. These effects were not limited to the IGROV cell line. They could also be demonstrated in the CAOV-3 ovarian cancer cell line and primary ovarian tumor cells isolated from ovarian ascites. These biological effects of CXCL12 on IGROV cells were also inhibited by the small molecular weight CXCR4 antagonist AMD3100. Finally, we found abundant intracellular CXCL12 protein in tumor cells in 15 of 18 ovarian cancer biopsies but not in epithelial cells from normal ovary or borderline disease. The chemokine CXCL12 may have multiple biological effects in ovarian cancer, stimulating cell migration and invasion through extracellular matrix, as well as DNA synthesis and establishment of a cytokine network in situations that are suboptimal for tumor cell growth.


Assuntos
Quimiocinas CXC/farmacologia , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases , Receptores CXCR4/fisiologia , Benzilaminas , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Quimiocina CXCL12 , Ciclamos , Ativação Enzimática/efeitos dos fármacos , Feminino , Compostos Heterocíclicos/farmacologia , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
14.
Assay Drug Dev Technol ; 3(6): 637-48, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16438659

RESUMO

Chemokine receptors have been implicated in several disease processes such as acute and chronic inflammation, cancer, and allograft rejection and are therefore targets for drug development. The chemokine receptors CCR5 and CXCR4 are of particular interest as they serve as entry cofactors for human immunodeficiency virus. These receptors are members of the G protein-coupled receptor (GPCR) family. In this respect, assessing GPCR activation by GTP binding is an important tool to study the early stage of signal transduction. The assay normally utilizes the non-hydrolysable GTP analogue guanosine 5'-gamma-[35S]thiotriphosphate. In order to avoid the problems involved in working with radioactivity, a new non-radioactive version of the assay was developed using a europium-labeled GTP analogue in which europium-GTP binding can be assayed using time-resolved fluorescence. The assay was optimized for CXCR4 and CCR5 and validated for screening of chemokine antagonists using the small molecule CXCR4 antagonist AMD3100 and CCR5 antagonists.


Assuntos
Antagonistas dos Receptores CCR5 , Európio , Guanosina Trifosfato/metabolismo , Receptores CXCR4/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Benzilaminas , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocinas/antagonistas & inibidores , Quimiocinas/metabolismo , Ciclamos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Fluorescência , Guanosina Difosfato , Guanosina Trifosfato/análogos & derivados , Compostos Heterocíclicos/farmacologia , Humanos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Reprodutibilidade dos Testes , Saponinas , Transdução de Sinais , Cloreto de Sódio , Temperatura , Fatores de Tempo
15.
Eur J Pharmacol ; 528(1-3): 132-6, 2005 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-16310182

RESUMO

Excess production of nitric oxide by inducible nitric oxide synthase (iNOS) has been implicated in cardiovascular dysfunction associated with the acute phase of diabetes mellitus. We examined if the selective nitric oxide scavenger, AMD6221 (ruthenium[hydrogen(diethylenetrinitrilo)pentaacetato] chloride) improved cardiovascular function in rats with streptozotocin (60 mg/kg, i.v.)-induced diabetes. The cardiovascular effects of noradrenaline (16.5 nmol/kg/min, i.v.) were measured in thiobutabarbitone-anaesthetised diabetic and control rats before and after acute administration of AMD6221 (80 mg/kg). Rats in the acute phase of diabetes (3 weeks post injection of streptozotocin) had impaired mean arterial pressure, left ventricular systolic pressure and maximum rate of increase (+dP/dt) and decrease (-dP/dt) of left ventricular pressure responses to noradrenaline compared with control rats. AMD6221 significantly augmented noradrenaline-induced increases in left ventricular systolic pressure and +/-dP/dt in the diabetic but not control rats. The results show that selective scavenging of nitric oxide by AMD6221 improved cardiac response to noradrenaline in rats with streptozotocin-induced diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Norepinefrina/farmacologia , Compostos Organometálicos/farmacologia , Ácido Pentético/análogos & derivados , Vasoconstritores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Frequência Cardíaca/efeitos dos fármacos , Masculino , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ácido Pentético/farmacologia , Ratos , Ratos Wistar , Estreptozocina , Resistência Vascular/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
16.
Curr Top Med Chem ; 4(15): 1585-603, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15579098

RESUMO

Whilst nitric oxide (NO) has emerged as one of the most versatile and ubiquitous molecules in the human body with a diverse range of physiological functions, dysfunction in NO biosynthesis or metabolism has led to the pathogenesis of a number of disease states. A variety of therapeutic strategies have therefore emerged that either reduce or increase endogenous NO levels depending on the disease pathology. The predominant strategy to date to reduce levels of NO is to utilise specific isoform selective inhibitors of nitric oxide synthases, the enzymes responsible for NO biosynthesis. An alternative line of attack, not related to specificity for a particular enzyme, but rather on compartmental localisation and pharmacokinetics, is to remove or scavenge the excess NO responsible for the disease pathology. In this regard, a number of NO scavenger molecules have demonstrated pharmacological activity across a broad spectrum of disease states. This review will highlight the rationale behind the development, and the current state of play, of one such class of NO scavengers, complexes of the d-block transition metal ruthenium. Prior to this, a brief overview of the remarkable diversity of NO, both from a chemical and biological viewpoint, will be provided for perspective.


Assuntos
Antineoplásicos/farmacocinética , Sequestradores de Radicais Livres/farmacocinética , Óxido Nítrico/metabolismo , Compostos Organometálicos/farmacocinética , Rutênio/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Modelos Biológicos , Modelos Moleculares , Óxido Nítrico/química , Compostos Organometálicos/química , Compostos Organometálicos/uso terapêutico , Rutênio/química , Rutênio/uso terapêutico
17.
J Thorac Cardiovasc Surg ; 125(3): 661-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12658210

RESUMO

OBJECTIVES: We tested whether nitric oxide scavenging with a ruthenium-based compound (AMD6221) would improve hemodynamics and alter nitric oxide synthase and matrix metalloproteinase activities in a canine model of cardiopulmonary bypass. METHODS: Dogs were randomized to either cardiopulmonary bypass (n = 12) or control (n = 12) groups. They were further randomized to receive a continuous infusion of AMD6221 or placebo. Cardiopulmonary bypass was maintained for 90 minutes, and then, 4 hours later, dogs were killed. Cardiac, lung, and brain sections were snap frozen in liquid nitrogen for determination of nitric oxide synthase, matrix metalloproteinase 2, and matrix metalloproteinase 9 activities. RESULTS: After cardiopulmonary bypass, 3 of 6 placebo-treated (cardiopulmonary bypass-placebo) and 0 of 6 AMD6221-treated (cardiopulmonary bypass-6221) animals required phenylephrine infusion to maintain a predetermined blood pressure (P <.05). Total fluid administration was lower in the cardiopulmonary bypass-6221 group compared with that in the cardiopulmonary bypass-placebo group (983 +/- 134 vs 1617 +/- 254 mL, respectively; P <.005). After cardiopulmonary bypass, matrix metalloproteinase 2 and matrix metalloproteinase 9 activities in the lung, left ventricle, and left atrium were decreased in the cardiopulmonary bypass-6221 group compared with that in the cardiopulmonary bypass-placebo group (P <.05). Ca(2+)-independent nitric oxide synthase activity and matrix metalloproteinase 2 activity in the brain were also lower (P <.05) in the cardiopulmonary bypass-SCV group. Finally, neutrophil expression of CD18, an adhesion complex, was lower at 4 hours after cardiopulmonary bypass in the cardiopulmonary bypass-6221 group compared with that in the cardiopulmonary bypass-placebo group (38 +/- 27 vs 81 +/- 11; P <.05). CONCLUSIONS: We found that (1) infusion of an nitric oxide scavenger, AMD6221, was associated with improved predefined hemodynamics; (2) cardiopulmonary bypass increased activities of Ca(2+)-independent nitric oxide synthase and matrix metalloproteinases in multiple organs; and (3) AMD6221 could ameliorate the increased generation of nitric oxide and increased matrix metalloproteinase activities.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Modelos Animais de Doenças , Sequestradores de Radicais Livres/uso terapêutico , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/imunologia , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/imunologia , Óxido Nítrico Sintase/efeitos dos fármacos , Óxido Nítrico Sintase/imunologia , Óxido Nítrico/imunologia , Compostos Organometálicos/uso terapêutico , Ácido Pentético/análogos & derivados , Ácido Pentético/uso terapêutico , Animais , Química Encefálica , Antígenos CD18/imunologia , Cães , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/farmacologia , Cardiopatias/imunologia , Cardiopatias/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Inflamação , Infusões Intravenosas , Pulmão/química , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Miocárdio/química , Neutrófilos/imunologia , Óxido Nítrico Sintase Tipo I , Compostos Organometálicos/farmacologia , Ácido Pentético/farmacologia , Distribuição Aleatória , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
18.
Inorg Chem ; 35(6): 1659-1666, 1996 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11666388

RESUMO

Several new organogold(III) derivatives of the type [AuX(2)(damp)] (damp = o-C(6)H(4)CH(2)NMe(2)) have been prepared [X = CN, SCN, dtc, or X(2) = tm; dtc = R(2)NCS(2) (R = Me (dmtc) or Et (detc)); tm = SCH(CO(2))CH(2)CO(2)Na] together with [AuCl(tpca)(damp)]Cl (tpca = o-Ph(2)PC(6)H(4)CO(2)H), [Au(dtc)(damp)]Y (Y = Cl, BPh(4)) and K[Au(CN)(3)(damp)]. The (13)C NMR spectra of these and previous derivatives have been fully assigned. In [Au(dtc)(2)(damp)] and K[Au(CN)(3)(damp)], the damp ligand is coordinated only through carbon, as shown by X-ray crystallography and/or NMR. [Au(detc)(2)(damp)] has space group C2/c, with a = 29.884(4) Å, b = 13.446(2) Å, c = 12.401(2) Å, beta = 99.45(3)(o), V = 4915 Å(3), Z = 8, and R = 0.057 for 1918 reflections. The damp and one detc ligand are monodentate, the other detc is bidentate; in solution, the complex shows dynamic behavior, with the detc ligands appearing equivalent. The crystal structure of [Au(dmtc)(damp)]BPh(4) [Pna2(1), a = 26.149(5) Å, b = 11.250(2) Å, c = 11.921(2) Å, V = 3507 Å(3), Z = 4, R = 0.073, 1772 reflections] shows both ligands to be bidentate in the cation, but the two Au-S distances are nonequivalent. The crystal structure of [Au(tm)(damp)] has also been determined [P2(1)/n, a = 18.267(7) Å, b = 9.618(3) Å, c = 18.938(4) Å, beta = 113.45(3)(o), V = 3053 Å(3), Z = 8, R = 0.079, 1389 reflections]. The tm is bound through sulfur and the carboxyl group which allows five-membered ring formation. In all three structures, the trans-influence of the sigma-bonded aryl group is apparent. [AuCl(2)(damp)] has been tested in vitroagainst a range of microbial strains and several human tumor lines, where it displays differential cytotoxicity similar to that of cisplatin. Against the ZR-75-1 human tumor xenograft, both [AuCl(2)(damp)] and cisplatin showed limited activity.

19.
Future Med Chem ; 6(1): 91-114, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24358950

RESUMO

Chemokines and their receptors are integral components of the immune response, regulating lymphocyte development, homing and trafficking, and playing a key role in the pathophysiology of many diseases. Chemokine receptors have, therefore, become the target for both small-molecule, peptide and antibody therapeutics. Chemokine receptors belong to the family of seven transmembrane receptor class A G protein-coupled receptors. The publication of the crystal structure of the archetypal class A seven transmembrane receptor protein rhodopsin, and other G protein-coupled receptors, including C-X-C chemokine receptor 4 and C-C chemokine receptor 5, provided the opportunity to create homology models of chemokine receptors. In this review, we describe an interdisciplinary approach to chemokine receptor modeling and the utility of this approach for structure-based drug design of chemokine receptor inhibitors.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Receptores de Quimiocinas/antagonistas & inibidores , Sítios de Ligação , Quimiocinas/metabolismo , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Estrutura Terciária de Proteína , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
20.
J Med Chem ; 56(20): 8049-65, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24090135

RESUMO

The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure-activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1. As a result, five advanced compounds, 6d, 6e, 6i, 6h, and 6k, were further evaluated for receptor selectivity, antiviral activity against CCR5 using (R5) HIV-1 clinical isolates, and in vitro and in vivo safety. On the basis of these results, 6d and 6h were selected for further development.


Assuntos
Fármacos Anti-HIV/farmacologia , Benzoatos/farmacologia , Antagonistas dos Receptores CCR5 , Replicação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Benzoatos/síntese química , Benzoatos/química , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Cricetulus , Desenho de Fármacos , Células HEK293 , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Imidazolidinas/química , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Modelos Químicos , Estrutura Molecular , Piperidinas/química , Receptores CCR5/genética , Receptores CCR5/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA