Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33148793

RESUMO

Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infections. Both induced strong transcriptional upregulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional downregulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8 h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8 h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shutoff (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity, as well as virus-induced global loss of host transcriptional activity, during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.


Assuntos
Regulação Viral da Expressão Gênica , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , RNA Viral/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Fibroblastos/metabolismo , Fibroblastos/virologia , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Biossíntese de Proteínas , Proteoma , RNA Viral/genética , Ribonucleases/genética , Transcriptoma , Proteínas Virais/genética
2.
PLoS Pathog ; 14(3): e1006954, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29579120

RESUMO

Lytic herpes simplex virus 1 (HSV-1) infection triggers disruption of transcription termination (DoTT) of most cellular genes, resulting in extensive intergenic transcription. Similarly, cellular stress responses lead to gene-specific transcription downstream of genes (DoG). In this study, we performed a detailed comparison of DoTT/DoG transcription between HSV-1 infection, salt and heat stress in primary human fibroblasts using 4sU-seq and ATAC-seq. Although DoTT at late times of HSV-1 infection was substantially more prominent than DoG transcription in salt and heat stress, poly(A) read-through due to DoTT/DoG transcription and affected genes were significantly correlated between all three conditions, in particular at earlier times of infection. We speculate that HSV-1 either directly usurps a cellular stress response or disrupts the transcription termination machinery in other ways but with similar consequences. In contrast to previous reports, we found that inhibition of Ca2+ signaling by BAPTA-AM did not specifically inhibit DoG transcription but globally impaired transcription. Most importantly, HSV-1-induced DoTT, but not stress-induced DoG transcription, was accompanied by a strong increase in open chromatin downstream of the affected poly(A) sites. In its extent and kinetics, downstream open chromatin essentially matched the poly(A) read-through transcription. We show that this does not cause but rather requires DoTT as well as high levels of transcription into the genomic regions downstream of genes. This raises intriguing new questions regarding the role of histone repositioning in the wake of RNA Polymerase II passage downstream of impaired poly(A) site recognition.


Assuntos
Cromatina/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , RNA Polimerase II/metabolismo , Estresse Fisiológico , Transcrição Gênica , Replicação Viral , Células Cultivadas , Cromatina/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Humanos
3.
Bioinformatics ; 33(10): 1565-1567, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069593

RESUMO

Summary: Analysis of Next Generation Sequencing (NGS) data requires the processing of large datasets by chaining various tools with complex input and output formats. In order to automate data analysis, we propose to standardize NGS tasks into modular workflows. This simplifies reliable handling and processing of NGS data, and corresponding solutions become substantially more reproducible and easier to maintain. Here, we present a documented, linux-based, toolbox of 42 processing modules that are combined to construct workflows facilitating a variety of tasks such as DNAseq and RNAseq analysis. We also describe important technical extensions. The high throughput executor (HTE) helps to increase the reliability and to reduce manual interventions when processing complex datasets. We also provide a dedicated binary manager that assists users in obtaining the modules' executables and keeping them up to date. As basis for this actively developed toolbox we use the workflow management software KNIME. Availability and Implementation: See http://ibisngs.github.io/knime4ngs for nodes and user manual (GPLv3 license). Contact: robert.kueffner@helmholtz-muenchen.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Reprodutibilidade dos Testes , Fluxo de Trabalho
4.
PLoS One ; 17(10): e0276467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279270

RESUMO

The herpes simplex virus 1 (HSV-1) virion host shut-off (vhs) protein cleaves both cellular and viral mRNAs by a translation-initiation-dependent mechanism, which should spare circular RNAs (circRNAs). Here, we show that vhs-mediated degradation of linear mRNAs leads to an enrichment of circRNAs relative to linear mRNAs during HSV-1 infection. This was also observed in influenza A virus (IAV) infection, likely due to degradation of linear host mRNAs mediated by the IAV PA-X protein and cap-snatching RNA-dependent RNA polymerase. For most circRNAs, enrichment was not due to increased circRNA synthesis but due to a general loss of linear RNAs. In contrast, biogenesis of a circRNA originating from the long isoform (NEAT1_2) of the nuclear paraspeckle assembly transcript 1 (NEAT1) was induced both in HSV-1 infection-in a vhs-independent manner-and in IAV infection. This was associated with induction of novel linear splicing of NEAT1_2 both within and downstream of the circRNA. NEAT1_2 forms a scaffold for paraspeckles, nuclear bodies located in the interchromatin space, must likely remain unspliced for paraspeckle assembly and is up-regulated in HSV-1 and IAV infection. We show that NEAT1_2 splicing and up-regulation can be induced by ectopic co-expression of the HSV-1 immediate-early proteins ICP22 and ICP27, potentially linking increased expression and splicing of NEAT1_2. To identify other conditions with NEAT1_2 splicing, we performed a large-scale screen of published RNA-seq data. This uncovered both induction of NEAT1_2 splicing and poly(A) read-through similar to HSV-1 and IAV infection in cancer cells upon inhibition or knockdown of CDK7 or the MED1 subunit of the Mediator complex phosphorylated by CDK7. In summary, our study reveals induction of novel circular and linear NEAT1_2 splicing isoforms as a common characteristic of HSV-1 and IAV infection and highlights a potential role of CDK7 in HSV-1 or IAV infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Influenza Humana , Humanos , Herpesvirus Humano 1/genética , RNA Circular , Proteínas Imediatamente Precoces/genética , RNA Mensageiro/genética , Isoformas de Proteínas/genética , RNA Polimerase Dependente de RNA , Complexo Mediador
5.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637528

RESUMO

The innate immune response influences neural repair after spinal cord injury (SCI). Here, we combined myeloid-specific transcriptomics and single-cell RNA sequencing to uncover not only a common core but also temporally distinct gene programs in injury-activated microglia and macrophages (IAM). Intriguingly, we detected a wide range of microglial cell states even in healthy spinal cord. Upon injury, IAM progressively acquired overall reparative, yet diversified transcriptional profiles, each comprising four transcriptional subtypes with specialized tasks. Notably, IAM have both distinct and common gene signatures as compared to neurodegeneration-associated microglia, both engaging phagocytosis, autophagy, and TyroBP pathways. We also identified an immediate response microglia subtype serving as a source population for microglial transformation and a proliferative subtype controlled by the epigenetic regulator histone deacetylase 3 (HDAC3). Together, our data unveil diversification of myeloid and glial subtypes in SCI and an extensive influence of HDAC3, which may be exploited to enhance functional recovery.


Assuntos
Traumatismos da Medula Espinal , Humanos , Macrófagos/metabolismo , Microglia/metabolismo , Fagocitose/genética , Recuperação de Função Fisiológica/fisiologia , Medula Espinal , Traumatismos da Medula Espinal/genética
6.
Gigascience ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556167

RESUMO

BACKGROUND: Advances in high-throughput methods have brought new challenges for biological data analysis, often requiring many interdependent steps applied to a large number of samples. To address this challenge, workflow management systems, such as Watchdog, have been developed to support scientists in the (semi-)automated execution of large analysis workflows. IMPLEMENTATION: Here, we present Watchdog 2.0, which implements new developments for module creation, reusability, and documentation and for reproducibility of analyses and workflow execution. Developments include a graphical user interface for semi-automatic module creation from software help pages, sharing repositories for modules and workflows, and a standardized module documentation format. The latter allows generation of a customized reference book of public and user-specific modules. Furthermore, extensive logging of workflow execution, module and software versions, and explicit support for package managers and container virtualization now ensures reproducibility of results. A step-by-step analysis protocol generated from the log file may, e.g., serve as a draft of a manuscript methods section. Finally, 2 new execution modes were implemented. One allows resuming workflow execution after interruption or modification without rerunning successfully executed tasks not affected by changes. The second one allows detaching and reattaching to workflow execution on a local computer while tasks continue running on computer clusters. CONCLUSIONS: Watchdog 2.0 provides several new developments that we believe to be of benefit for large-scale bioinformatics analysis and that are not completely covered by other competing workflow management systems. The software itself, module and workflow repositories, and comprehensive documentation are freely available at https://www.bio.ifi.lmu.de/watchdog.


Assuntos
Biologia Computacional/métodos , Software , Algoritmos , Biologia Computacional/normas , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
7.
Nat Neurosci ; 23(3): 337-350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32112058

RESUMO

Tissue repair after spinal cord injury requires the mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core, which is surrounded by an astrocytic border. Here we elucidate a temporally distinct gene signature in injury-activated microglia and macrophages (IAMs) that engages axon guidance pathways. Plexin-B2 is upregulated in IAMs and is required for motor sensory recovery after spinal cord injury. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAMs away from colliding cells and facilitates matrix compaction. Our data therefore establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAMs with the injury microenvironment during wound healing.


Assuntos
Macrófagos/fisiologia , Microglia/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Traumatismos da Medula Espinal/patologia , Cicatrização/fisiologia , Animais , Axônios/fisiologia , Microambiente Celular , Locomoção/fisiologia , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Vias Neurais/fisiologia , Fagocitose , Recuperação de Função Fisiológica , Sensação/fisiologia , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA