Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Cell ; 78(1): 5-8, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243831

RESUMO

Elegant studies by Hasler et al. (2020) and Wang et al. (2020) uncover a novel role of LARP7 in facilitating the 2'-O-methylation of the spliceosomal U6 snRNA, which is functionally required for fidelity of pre-mRNA splicing and development of male germ cells.


Assuntos
Splicing de RNA , RNA Nuclear Pequeno , Animais , Sequência de Bases , Masculino , Camundongos , Conformação de Ácido Nucleico , Espermatogênese
2.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
3.
Proc Natl Acad Sci U S A ; 120(49): e2310752120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019864

RESUMO

The mechanisms generating novel genes and genetic information are poorly known, even for microRNA (miRNA) genes with an extremely constrained design. All miRNA primary transcripts need to fold into a stem-loop structure to yield short gene products ([Formula: see text]22 nt) that bind and repress their mRNA targets. While a substantial number of miRNA genes are ancient and highly conserved, short secondary structures coding for entirely novel miRNA genes have been shown to emerge in a lineage-specific manner. Template switching is a DNA-replication-related mutation mechanism that can introduce complex changes and generate perfect base pairing for entire hairpin structures in a single event. Here, we show that the template-switching mutations (TSMs) have participated in the emergence of over 6,000 suitable hairpin structures in the primate lineage to yield at least 18 new human miRNA genes, that is 26% of the miRNAs inferred to have arisen since the origin of primates. While the mechanism appears random, the TSM-generated miRNAs are enriched in introns where they can be expressed with their host genes. The high frequency of TSM events provides raw material for evolution. Being orders of magnitude faster than other mechanisms proposed for de novo creation of genes, TSM-generated miRNAs enable near-instant rewiring of genetic information and rapid adaptation to changing environments.


Assuntos
MicroRNAs , Animais , Humanos , MicroRNAs/metabolismo , Primatas/genética , Íntrons , Replicação do DNA/genética
4.
EMBO J ; 40(14): e106536, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009673

RESUMO

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mutação/genética , Spliceossomos/genética , Sequência de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Íntrons/genética
5.
Nucleic Acids Res ; 49(5): 2835-2847, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577674

RESUMO

Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3'-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3'-to-5' exonuclease. Finally, we show that several other single-nucleotide variants in the 3' stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3' stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.


Assuntos
Ataxia Cerebelar/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Mutação Puntual , Estabilidade de RNA , RNA Nuclear Pequeno/metabolismo
6.
New Phytol ; 233(1): 329-343, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637542

RESUMO

Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Isoformas de Proteínas/genética
7.
J Cell Sci ; 132(8)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30890647

RESUMO

In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/química , Citoesqueleto/metabolismo , Histona Acetiltransferases/metabolismo , Splicing de RNA , Proteínas Adaptadoras de Transdução de Sinal/genética , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Expressão Gênica , Células HeLa , Histona Acetiltransferases/genética , Humanos , Espectrometria de Massas , Ativação Transcricional
8.
Semin Cell Dev Biol ; 79: 103-112, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28965864

RESUMO

The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.


Assuntos
Doença/genética , Precursores de RNA/genética , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/genética , Animais , Sequência de Bases , Humanos , Mutação , RNA Mensageiro/genética
9.
RNA ; 24(3): 396-409, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255062

RESUMO

Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.


Assuntos
Nanismo Hipofisário/genética , Modelos Moleculares , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos , Códon sem Sentido , Nanismo Hipofisário/metabolismo , Células HeLa , Humanos , Íntrons/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Prolina , RNA Nuclear Pequeno/química , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Treonina
10.
PLoS Genet ; 13(5): e1006824, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28549066

RESUMO

Cellular homeostasis of the minor spliceosome is regulated by a negative feed-back loop that targets U11-48K and U11/U12-65K mRNAs encoding essential components of the U12-type intron-specific U11/U12 di-snRNP. This involves interaction of the U11 snRNP with an evolutionarily conserved splicing enhancer giving rise to unproductive mRNA isoforms. In the case of U11/U12-65K, this mechanism controls the length of the 3' untranslated region (3'UTR). We show that this process is dynamically regulated in developing neurons and some other cell types, and involves a binary switch between translation-competent mRNAs with a short 3'UTR to non-productive isoforms with a long 3'UTR that are retained in the nucleus or/and spliced to the downstream amylase locus. Importantly, the choice between these alternatives is determined by alternative terminal exon definition events regulated by conserved U12- and U2-type 5' splice sites as well as sequence signals used for pre-mRNA cleavage and polyadenylation. We additionally show that U11 snRNP binding to the U11/U12-65K mRNA species with a long 3'UTR is required for their nuclear retention. Together, our studies uncover an intricate molecular circuitry regulating the abundance of a key spliceosomal protein and shed new light on the mechanisms limiting the export of non-productively spliced mRNAs from the nucleus to the cytoplasm.


Assuntos
Processamento Alternativo , Núcleo Celular/metabolismo , Éxons , Ribonucleoproteínas Nucleares Pequenas/genética , Transporte Ativo do Núcleo Celular , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
11.
BMC Bioinformatics ; 19(1): 130, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642843

RESUMO

BACKGROUND: In-depth study of the intron retention levels of transcripts provide insights on the mechanisms regulating pre-mRNA splicing efficiency. Additionally, detailed analysis of retained introns can link these introns to post-transcriptional regulation or identify aberrant splicing events in human diseases. RESULTS: We present IntEREst, Intron-Exon Retention Estimator, an R package that supports rigorous analysis of non-annotated intron retention events (in addition to the ones annotated by RefSeq or similar databases), and support intra-sample in addition to inter-sample comparisons. It accepts binary sequence alignment/map (.bam) files as input and determines genome-wide estimates of intron retention or exon-exon junction levels. Moreover, it includes functions for comparing subsets of user-defined introns (e.g. U12-type vs U2-type) and its plotting functions allow visualization of the distribution of the retention levels of the introns. Statistical methods are adapted from the DESeq2, edgeR and DEXSeq R packages to extract the significantly more or less retained introns. Analyses can be performed either sequentially (on single core) or in parallel (on multiple cores). We used IntEREst to investigate the U12- and U2-type intron retention in human and plant RNAseq dataset with defects in the U12-dependent spliceosome due to mutations in the ZRSR2 component of this spliceosome. Additionally, we compared the retained introns discovered by IntEREst with that of other methods and studies. CONCLUSION: IntEREst is an R package for Intron retention and exon-exon junction levels analysis of RNA-seq data. Both the human and plant analyses show that the U12-type introns are retained at higher level compared to the U2-type introns already in the control samples, but the retention is exacerbated in patient or plant samples carrying a mutated ZRSR2 gene. Intron retention events caused by ZRSR2 mutation that we discovered using IntEREst (DESeq2 based function) show considerable overlap with the retained introns discovered by other methods (e.g. IRFinder and edgeR based function of IntEREst). Our results indicate that increase in both the number of biological replicates and the depth of sequencing library promote the discovery of retained introns, but the effect of library size gradually decreases with more than 35 million reads mapped to the introns.


Assuntos
Biologia Computacional/métodos , Éxons/genética , Íntrons/genética , Software , Pareamento de Bases/genética , Regulação para Baixo/genética , Genoma Humano , Humanos , Síndromes Mielodisplásicas/genética , Tamanho da Amostra , Regulação para Cima/genética
12.
Mol Ecol ; 27(4): 886-897, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28746735

RESUMO

Natural habitats are exposed to an increasing number of environmental stressors that cause important ecological consequences. However, the multifarious nature of environmental change, the strength and the relative timing of each stressor largely limit our understanding of biological responses to environmental change. In particular, early response to unpredictable environmental change, critical to survival and fitness in later life stages, is largely uncharacterized. Here, we characterize the early transcriptional response of the keystone species Daphnia magna to twelve environmental perturbations, including biotic and abiotic stressors. We first perform a differential expression analysis aimed at identifying differential regulation of individual genes in response to stress. This preliminary analysis revealed that a few individual genes were responsive to environmental perturbations and they were modulated in a stressor and genotype-specific manner. Given the limited number of differentially regulated genes, we were unable to identify pathways involved in stress response. Hence, to gain a better understanding of the genetic and functional foundation of tolerance to multiple environmental stressors, we leveraged the correlative nature of networks and performed a weighted gene co-expression network analysis. We discovered that approximately one-third of the Daphnia genes, enriched for metabolism, cell signalling and general stress response, drives transcriptional early response to environmental stress and it is shared among genetic backgrounds. This initial response is followed by a genotype- and/or condition-specific transcriptional response with a strong genotype-by-environment interaction. Intriguingly, genotype- and condition-specific transcriptional response is found in genes not conserved beyond crustaceans, suggesting niche-specific adaptation.


Assuntos
Daphnia/genética , Redes Reguladoras de Genes , Transcrição Gênica , Animais , Sequência Conservada , Regulação da Expressão Gênica , Genoma , Genótipo , Família Multigênica
13.
Mol Cell ; 37(6): 821-33, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347424

RESUMO

Alternative pre-mRNA splicing is typically regulated by specific protein factors that recognize unique sequence elements in pre-mRNA and affect, directly or indirectly, nearby splice site usage. We show that 5' splice site sequences (5'ss) of U12-type introns, when repeated in tandem, form a U11 snRNP-binding splicing enhancer, USSE. Binding of U11 to the USSE regulates alternative splicing of U2-type introns by activating an upstream 3'ss. The U12-type 5'ss-like sequences within the USSE have a regulatory role and do not function as splicing donors. USSEs, present both in animal and plant genes encoding the U11/U12 di-snRNP-specific 48K and 65K proteins, create sensitive switches that respond to intracellular levels of functional U11 snRNP and alter the stability of 48K and 65K mRNAs. We conclude that U11 functions not only in 5'ss recognition in constitutive splicing, but also as an activator of U2-dependent alternative splicing and as a regulator of the U12-dependent spliceosome.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Sequência Conservada , Citoplasma/metabolismo , Evolução Molecular , Humanos , Íntrons , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética
14.
Arch Virol ; 162(7): 2041-2045, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283818

RESUMO

The discovery and full-genome sequences of two isolates of a fourth capulavirus species are reported. The viruses were discovered during a viral metagenomics survey of uncultivated Plantago lanceolata plants in the Åland archipelago of south western Finland. The newly discovered viruses apparently produce no symptoms in P. lanceolata. They have a genome organization that is very similar to that of the three known capulavirus species and additionally share between 62.9 and 67.1% genome-wide sequence identity with the isolates of these species. It is therefore proposed that these viruses be assigned to a new capulavirus species named "Plantago lanceolata latent virus".


Assuntos
Geminiviridae/classificação , Doenças das Plantas/virologia , Plantago/virologia , Finlândia , Geminiviridae/genética , Geminiviridae/isolamento & purificação , Metagenômica
15.
Nucleic Acids Res ; 42(11): 7358-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24848017

RESUMO

U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels.


Assuntos
Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Íntrons , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Linhagem Celular , Núcleo Celular/enzimologia , Complexo Multienzimático de Ribonucleases do Exossomo/antagonistas & inibidores , Humanos , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores
16.
RNA ; 19(3): 380-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335637

RESUMO

Alternative splicing (AS) is a major contributor to proteome diversity, but it also regulates gene expression by introducing premature termination codons (PTCs) that destabilize transcripts, typically via the nonsense-mediated decay (NMD) pathway. Such AS events often take place within long, conserved sequence elements, particularly in genes encoding various RNA binding proteins. AS-NMD is often activated by the protein encoded by the same gene, leading to a self-regulating feedback loop that maintains constant protein levels. However, cross-regulation between different RNA binding proteins is also common, giving rise to finely tuned regulatory networks. Recently, we described a feedback mechanism regulating two protein components of the U12-dependent spliceosome (U11-48K and U11/U12-65K) through a highly conserved sequence element. These elements contain a U11 snRNP-binding splicing enhancer (USSE), which, through the U11 snRNP, activates an upstream U2-type 3'ss, resulting in the degradation of the U11-48K mRNA by AS-NMD. Through phylogenetic analysis, we now identify a G-rich sequence element that is conserved in fishes as well as mammals. We show that this element binds hnRNPF/H proteins in vitro. Knockdown of hnRNPH1/H2 or mutations in the G-run both lead to enhanced activation of the 3'ss in vivo, suggesting that hnRNPH1/H2 proteins counteract the 3'ss activation. Furthermore, we provide evidence that U1 binding immediately downstream from the G-run similarly counteracts the U11-mediated activation of the alternative 3'ss. Thus, our results elucidate the mechanism in which snRNPs from both spliceosomes together with hnRNPH1/H2 proteins regulate the recognition and activation of the highly conserved alternative splice sites within the U11-48K pre-mRNA.


Assuntos
Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Nuclear Heterogêneo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo
17.
Mol Ecol ; 24(19): 4886-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26331775

RESUMO

Insect flight is one of the most energetically demanding activities in the animal kingdom, yet for many insects flight is necessary for reproduction and foraging. Moreover, dispersal by flight is essential for the viability of species living in fragmented landscapes. Here, working on the Glanville fritillary butterfly (Melitaea cinxia), we use transcriptome sequencing to investigate gene expression changes caused by 15 min of flight in two contrasting populations and the two sexes. Male butterflies and individuals from a large metapopulation had significantly higher peak flight metabolic rate (FMR) than female butterflies and those from a small inbred population. In the pooled data, FMR was significantly positively correlated with genome-wide heterozygosity, a surrogate of individual inbreeding. The flight experiment changed the expression level of 1513 genes, including genes related to major energy metabolism pathways, ribosome biogenesis and RNA processing, and stress and immune responses. Males and butterflies from the population with high FMR had higher basal expression of genes related to energy metabolism, whereas females and butterflies from the small population with low FMR had higher expression of genes related to ribosome/RNA processing and immune response. Following the flight treatment, genes related to energy metabolism were generally down-regulated, while genes related to ribosome/RNA processing and immune response were up-regulated. These results suggest that common molecular mechanisms respond to flight and can influence differences in flight metabolic capacity between populations and sexes.


Assuntos
Borboletas/genética , Voo Animal , Expressão Gênica , Caracteres Sexuais , Transcriptoma , Animais , Borboletas/fisiologia , Metabolismo Energético/genética , Feminino , Finlândia , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
18.
RNA Biol ; 12(11): 1256-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479860

RESUMO

Many splicing regulators bind to their own pre-mRNAs to induce alternative splicing that leads to formation of unstable mRNA isoforms. This provides an autoregulatory feedback mechanism that regulates the cellular homeostasis of these factors. We have described such an autoregulatory mechanism for two core protein components, U11-48K and U11/U12-65K, of the U12-dependent spliceosome. This regulatory system uses an atypical splicing enhancer element termed USSE (U11 snRNP-binding splicing enhancer), which contains two U12-type consensus 5' splice sites (5'ss). Evolutionary analysis of the USSE element from a large number of animal and plant species indicate that USSE sequence must be located 25-50 nt downstream from the target 3' splice site (3'ss). Together with functional evidence showing a loss of USSE activity when this distance is reduced and a requirement for RS-domain of U11-35K protein for 3'ss activation, our data suggests that U11 snRNP bound to USSE uses exon definition interactions for regulating alternative splicing. However, unlike standard exon definition where the 5'ss bound by U1 or U11 will be subsequently activated for splicing, the USSE element functions similarly as an exonic splicing enhancer and is involved only in upstream splice site activation but does not function as a splicing donor. Additionally, our evolutionary and functional data suggests that the function of the 5'ss duplication within the USSE elements is to allow binding of two U11/U12 di-snRNPs that stabilize each others' binding through putative mutual interactions.


Assuntos
Processamento Alternativo , Evolução Molecular , Éxons , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Elementos Facilitadores Genéticos , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Elementos de Resposta , Ribonucleoproteínas Nucleares Pequenas/química , Alinhamento de Sequência
19.
Nano Lett ; 14(4): 2196-200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24627955

RESUMO

DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.


Assuntos
Proteínas do Capsídeo/química , DNA/administração & dosagem , Proteínas Imobilizadas/química , Nanoestruturas/química , Transfecção , Proteínas do Capsídeo/metabolismo , DNA/química , DNA/genética , Sistemas de Liberação de Medicamentos , Células HEK293 , Humanos , Proteínas Imobilizadas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
20.
RNA Biol ; 11(11): 1325-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25692230

RESUMO

U12-type introns are a rare class of nuclear introns that are removed by a dedicated U12-dependent spliceosome and are thought to regulate the expression of their target genes owing through their slower splicing reaction. Recent genome-wide studies on the splicing of U12-type introns are now providing new insights on the biological significance of this parallel splicing machinery. The new studies cover multiple different organisms and experimental systems, including human patient cells with mutations in the components of the minor spliceosome, zebrafish with similar mutations and various experimentally manipulated human cells and Arabidopsis plants. Here, we will discuss the potential implications of these studies on the understanding of the mechanism and regulation of the minor spliceosome, as well as their medical implications.


Assuntos
Regulação da Expressão Gênica , Íntrons/genética , Splicing de RNA , Spliceossomos/genética , Animais , Arabidopsis/genética , Nanismo/genética , Humanos , Microcefalia/genética , Modelos Genéticos , Mutação , Osteocondrodisplasias/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA