Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nucleic Acids Res ; 51(D1): D539-D545, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382402

RESUMO

The CORUM database has been providing comprehensive reference information about experimentally characterized, mammalian protein complexes and their associated biological and biomedical properties since 2007. Given that most catalytic and regulatory functions of the cell are carried out by protein complexes, their composition and characterization is of greatest importance in basic and disease biology. The new CORUM 4.0 release encompasses 5204 protein complexes offering the largest and most comprehensive publicly available dataset of manually curated mammalian protein complexes. The CORUM dataset is built from 5299 different genes, representing 26% of the protein coding genes in humans. Complex information from 3354 scientific articles is mainly obtained from human (70%), mouse (16%) and rat (9%) cells and tissues. Recent curation work includes sets of protein complexes, Functional Complex Groups, that offer comprehensive collections of published data in specific biological processes and molecular functions. In addition, a new graphical analysis tool was implemented that displays co-expression data from the subunits of protein complexes. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.


Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos , Animais , Humanos , Camundongos , Ratos , Bases de Dados Factuais , Mamíferos , Complexos Multiproteicos/química
2.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34664389

RESUMO

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Assuntos
COVID-19/imunologia , Biologia Computacional/métodos , Bases de Dados Factuais , SARS-CoV-2/imunologia , Software , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Gráficos por Computador , Citocinas/genética , Citocinas/imunologia , Mineração de Dados/estatística & dados numéricos , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/virologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/imunologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/virologia , Mapeamento de Interação de Proteínas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Tratamento Farmacológico da COVID-19
3.
Nucleic Acids Res ; 47(D1): D559-D563, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357367

RESUMO

CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (67%), mouse (15%) and rat (10%). Given the vital functions of these macromolecular machines, their identification and functional characterization is foundational to our understanding of normal and disease biology. The new CORUM 3.0 release encompasses 4274 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 4473 different genes, representing 22% of the protein coding genes in humans. Protein complexes are described by a protein complex name, subunit composition, cellular functions as well as the literature references. Information about stoichiometry of subunits depends on availability of experimental data. Recent developments include a graphical tool displaying known interactions between subunits. This allows the prediction of structural interconnections within protein complexes of unknown structure. In addition, we present a set of 58 protein complexes with alternatively spliced subunits. Those were found to affect cellular functions such as regulation of apoptotic activity, protein complex assembly or define cellular localization. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.


Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Processamento Alternativo , Animais , Humanos , Camundongos , Complexos Multiproteicos/genética , Conformação Proteica , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Ratos
5.
Nucleic Acids Res ; 42(Database issue): D396-400, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214996

RESUMO

Knowledge about non-interacting proteins (NIPs) is important for training the algorithms to predict protein-protein interactions (PPIs) and for assessing the false positive rates of PPI detection efforts. We present the second version of Negatome, a database of proteins and protein domains that are unlikely to engage in physical interactions (available online at http://mips.helmholtz-muenchen.de/proj/ppi/negatome). Negatome is derived by manual curation of literature and by analyzing three-dimensional structures of protein complexes. The main methodological innovation in Negatome 2.0 is the utilization of an advanced text mining procedure to guide the manual annotation process. Potential non-interactions were identified by a modified version of Excerbt, a text mining tool based on semantic sentence analysis. Manual verification shows that nearly a half of the text mining results with the highest confidence values correspond to NIP pairs. Compared to the first version the contents of the database have grown by over 300%.


Assuntos
Bases de Dados de Proteínas , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mineração de Dados , Internet , Anotação de Sequência Molecular , Conformação Proteica
6.
Nucleic Acids Res ; 38(Database issue): D540-4, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19920129

RESUMO

The Negatome is a collection of protein and domain pairs that are unlikely to be engaged in direct physical interactions. The database currently contains experimentally supported non-interacting protein pairs derived from two distinct sources: by manual curation of literature and by analyzing protein complexes with known 3D structure. More stringent lists of non-interacting pairs were derived from these two datasets by excluding interactions detected by high-throughput approaches. Additionally, non-interacting protein domains have been derived from the stringent manual and structural data, respectively. The Negatome is much less biased toward functionally dissimilar proteins than the negative data derived by randomly selecting proteins from different cellular locations. It can be used to evaluate protein and domain interactions from new experiments and improve the training of interaction prediction algorithms. The Negatome database is available at http://mips.helmholtz-muenchen.de/proj/ppi/negatome.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Mapeamento de Interação de Proteínas , Proteínas/química , Algoritmos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genoma Fúngico , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Software
7.
Nucleic Acids Res ; 38(Database issue): D497-501, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884131

RESUMO

CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (64%), mouse (16%) and rat (12%). Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The new CORUM 2.0 release encompasses 2837 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 3198 different genes, representing approximately 16% of the protein coding genes in humans. Each protein complex is described by a protein complex name, subunit composition, function as well as the literature reference that characterizes the respective protein complex. Recent developments include mapping of functional annotation to Gene Ontology terms as well as cross-references to Entrez Gene identifiers. In addition, a 'Phylogenetic Conservation' analysis tool was implemented that analyses the potential occurrence of orthologous protein complex subunits in mammals and other selected groups of organisms. This allows one to predict the occurrence of protein complexes in different phylogenetic groups. CORUM is freely accessible at (http://mips.helmholtz-muenchen.de/genre/proj/corum/index.html).


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Complexos Multiproteicos , Animais , Biologia Computacional/tendências , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Camundongos , Filogenia , Estrutura Terciária de Proteína , Ratos , Saccharomyces cerevisiae/genética , Software
8.
Viruses ; 14(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891571

RESUMO

Human endogenous retrovirus (HERVs), normally silenced by methylation or mutations, can be reactivated by multiple environmental factors, including infections with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs in human A549 cells infected by two wild-type (PR8M, SC35M) and one mutated (SC35MΔNS1) strains of Influenza A virus (IAVs). We found that the majority of differentially expressed HERVs (DEHERVS) and genes (DEGs) were up-regulated in the infected cells, with the most significantly enriched biological processes associated with the genes differentially expressed exclusively in SC35MΔNS1 being linked to the immune system. Most DEHERVs in PR8M and SC35M are mammalian apparent LTR retrotransposons, while in SC35MΔNS1, more HERV loci from the HERVW9 group were differentially expressed. Furthermore, up-regulated pairs of HERVs and genes in close chromosomal proximity to each other tended to be associated with immune responses, which implies that specific HERV groups might have the potential to trigger specific gene networks and influence host immunological pathways.


Assuntos
Retrovirus Endógenos , Vírus da Influenza A , Animais , Antivirais , Retrovirus Endógenos/genética , Humanos , Sistema Imunitário , Vírus da Influenza A/genética , Mamíferos , Retroelementos
9.
Cell Stem Cell ; 28(9): 1566-1581.e8, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33951478

RESUMO

The biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system. We found that elevated HERV-K(HML-2) transcription is detrimental for the development and function of cortical neurons. These effects are cell-type-specific, as dopaminergic neurons are unaffected. Moreover, high HERV-K(HML-2) transcription alters cortical layer formation in forebrain organoids. HERV-K(HML-2) transcriptional activation leads to hyperactivation of NTRK3 expression and other neurodegeneration-related genes. Direct activation of NTRK3 phenotypically resembles HERV-K(HML-2) induction, and reducing NTRK3 levels in context of HERV-K(HML-2) induction restores cortical neuron differentiation. Hence, these findings unravel a cell-type-specific role for HERV-K(HML-2) in cortical neuron development.


Assuntos
Retrovirus Endógenos , Diferenciação Celular , Humanos , Ativação Transcricional
10.
Nucleic Acids Res ; 36(Database issue): D646-50, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17965090

RESUMO

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes.


Assuntos
Bases de Dados de Proteínas , Complexos Multiproteicos/fisiologia , Animais , Humanos , Internet , Camundongos , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Ratos , Interface Usuário-Computador
11.
Sci Rep ; 10(1): 4350, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152446

RESUMO

Isoform switching is a recently characterized hallmark of cancer, and often translates to the loss or gain of domains mediating protein interactions and thus, the re-wiring of the interactome. Recent computational tools leverage domain-domain interaction data to resolve the condition-specific interaction networks from RNA-Seq data accounting for the domain content of the primary transcripts expressed. Here, we used The Cancer Genome Atlas RNA-Seq datasets to generate 642 patient-specific pairs of interactomes corresponding to both the tumor and the healthy tissues across 13 cancer types. The comparison of these interactomes provided a list of patient-specific edgetic perturbations of the interactomes associated with the cancerous state. We found that among the identified perturbations, select sets are robustly shared between patients at the multi-cancer, cancer-specific and cancer sub-type specific levels. Interestingly, the majority of the alterations do not directly involve significantly mutated genes, nevertheless, they strongly correlate with patient survival. The findings (available at EdgeExplorer: "http://webclu.bio.wzw.tum.de/EdgeExplorer") are a new source of potential biomarkers for classifying cancer types and the proteins we identified are potential anti-cancer therapy targets.


Assuntos
Biomarcadores Tumorais , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Relação Estrutura-Atividade
12.
Nucleic Acids Res ; 34(Database issue): D568-71, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381934

RESUMO

MfunGD (http://mips.gsf.de/genre/proj/mfungd/) provides a resource for annotated mouse proteins and their occurrence in protein networks. Manual annotation concentrates on proteins which are found to interact physically with other proteins. Accordingly, manually curated information from a protein-protein interaction database (MPPI) and a database of mammalian protein complexes is interconnected with MfunGD. Protein function annotation is performed using the Functional Catalogue (FunCat) annotation scheme which is widely used for the analysis of protein networks. The dataset is also supplemented with information about the literature that was used in the annotation process as well as links to the SIMAP Fasta database, the Pedant protein analysis system and cross-references to external resources. Proteins that so far were not manually inspected are annotated automatically by a graphical probabilistic model and/or superparamagnetic clustering. The database is continuously expanding to include the rapidly growing amount of functional information about gene products from mouse. MfunGD is implemented in GenRE, a J2EE-based component-oriented multi-tier architecture following the separation of concern principle.


Assuntos
Bases de Dados Genéticas , Genômica , Camundongos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/fisiologia , Animais , Internet , Complexos Multiproteicos/química , Proteômica , Software , Interface Usuário-Computador
13.
Orphanet J Rare Dis ; 13(1): 22, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370821

RESUMO

BACKGROUND: Thoroughly annotated data resources are a key requirement in phenotype dependent analysis and diagnosis of diseases in the area of precision medicine. Recent work has shown that curation and systematic annotation of human phenome data can significantly improve the quality and selectivity for the interpretation of inherited diseases. We have therefore developed PhenoDis, a comprehensive, manually annotated database providing symptomatic, genetic and imprinting information about rare cardiac diseases. RESULTS: PhenoDis includes 214 rare cardiac diseases from Orphanet and 94 more from OMIM. For phenotypic characterization of the diseases, we performed manual annotation of diseases with articles from the biomedical literature. Detailed description of disease symptoms required the use of 2247 different terms from the Human Phenotype Ontology (HPO). Diseases listed in PhenoDis frequently cover a broad spectrum of symptoms with 28% from the branch of 'cardiovascular abnormality' and others from areas such as neurological (11.5%) and metabolism (6%). We collected extensive information on the frequency of symptoms in respective diseases as well as on disease-associated genes and imprinting data. The analysis of the abundance of symptoms in patient studies revealed that most of the annotated symptoms (71%) are found in less than half of the patients of a particular disease. Comprehensive and systematic characterization of symptoms including their frequency is a pivotal prerequisite for computer based prediction of diseases and disease causing genetic variants. To this end, PhenoDis provides in-depth annotation for a complete group of rare diseases, including information on pathogenic and likely pathogenic genetic variants for 206 diseases as listed in ClinVar. We integrated all results in an online database ( http://mips.helmholtz-muenchen.de/phenodis/ ) with multiple search options and provide the complete dataset for download. CONCLUSION: PhenoDis provides a comprehensive set of manually annotated rare cardiac diseases that enables computational approaches for disease prediction via decision support systems and phenotype-driven strategies for the identification of disease causing genes.


Assuntos
Cardiopatias/genética , Cardiopatias/patologia , Doenças Raras/genética , Doenças Raras/patologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética/genética , Genômica/métodos , Cardiopatias/metabolismo , Humanos , Fenótipo , Medicina de Precisão/métodos , Doenças Raras/metabolismo
14.
BMC Bioinformatics ; 8: 261, 2007 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-17659089

RESUMO

BACKGROUND: Unsupervised annotation of proteins by software pipelines suffers from very high error rates. Spurious functional assignments are usually caused by unwarranted homology-based transfer of information from existing database entries to the new target sequences. We have previously demonstrated that data mining in large sequence annotation databanks can help identify annotation items that are strongly associated with each other, and that exceptions from strong positive association rules often point to potential annotation errors. Here we investigate the applicability of negative association rule mining to revealing erroneously assigned annotation items. RESULTS: Almost all exceptions from strong negative association rules are connected to at least one wrong attribute in the feature combination making up the rule. The fraction of annotation features flagged by this approach as suspicious is strongly enriched in errors and constitutes about 0.6% of the whole body of the similarity-transferred annotation in the PEDANT genome database. Positive rule mining does not identify two thirds of these errors. The approach based on exceptions from negative rules is much more specific than positive rule mining, but its coverage is significantly lower. CONCLUSION: Mining of both negative and positive association rules is a potent tool for finding significant trends in protein annotation and flagging doubtful features for further inspection.


Assuntos
Algoritmos , Bases de Dados Genéticas/estatística & dados numéricos , Bases de Dados de Proteínas/estatística & dados numéricos , Genoma , Armazenamento e Recuperação da Informação/métodos , Proteínas/genética , Sequência de Aminoácidos , Biologia Computacional/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Software
15.
Sci Rep ; 7(1): 4555, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676676

RESUMO

Recognizing that insights into the modulation of sleep duration can emerge by exploring the functional relationships among genes, we used this strategy to explore the genome-wide association results for this trait. We detected two major signalling pathways (ion channels and the ERBB signalling family of tyrosine kinases) that could be replicated across independent GWA studies meta-analyses. To investigate the significance of these pathways for sleep modulation, we performed transcriptome analyses of short sleeping flies' heads (knockdown for the ABCC9 gene homolog; dSur). We found significant alterations in gene-expression in the short sleeping knockdowns versus controls flies, which correspond to pathways associated with sleep duration in our human studies. Most notably, the expression of Rho and EGFR (members of the ERBB signalling pathway) genes was down- and up-regulated, respectively, consistently with the established role of these genes for sleep consolidation in Drosophila. Using a disease multifactorial interaction network, we showed that many of the genes of the pathways indicated to be relevant for sleep duration had functional evidence of their involvement with sleep regulation, circadian rhythms, insulin secretion, gluconeogenesis and lipogenesis.


Assuntos
Regulação da Expressão Gênica , Transdução de Sinais , Sono/fisiologia , Animais , Biologia Computacional , Drosophila/fisiologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genômica , Humanos , Metanálise como Assunto , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
16.
Bioinformatics ; 21 Suppl 3: iii49-57, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16306393

RESUMO

MOTIVATION: Millions of protein sequences currently being deposited to sequence databanks will never be annotated manually. Similarity-based annotation generated by automatic software pipelines unavoidably contains spurious assignments due to the imperfection of bioinformatics methods. Examples of such annotation errors include over- and underpredictions caused by the use of fixed recognition thresholds and incorrect annotations caused by transitivity based information transfer to unrelated proteins or transfer of errors already accumulated in databases. One of the most difficult and timely challenges in bioinformatics is the development of intelligent systems aimed at improving the quality of automatically generated annotation. A possible approach to this problem is to detect anomalies in annotation items based on association rule mining. RESULTS: We present the first large-scale analysis of association rules derived from two large protein annotation databases-Swiss-Prot and PEDANT-and reveal novel, previously unknown tendencies of rule strength distributions. Most of the rules are either very strong or very weak, with rules in the medium strength range being relatively infrequent. Based on dynamics of error correction in subsequent Swiss-Prot releases and on our own manual analysis we demonstrate that exceptions from strong rules are, indeed, significantly enriched in annotation errors and can be used to automatically flag them. We identify different strength dependencies of rules derived from different fields in Swiss-Prot. A compositional breakdown of association rules generated from PEDANT in terms of their constituent items indicates that most of the errors that can be corrected are related to gene functional roles. Swiss-Prot errors are usually caused by under-annotation owing to its conservative approach, whereas automatically generated PEDANT annotation suffers from over-annotation. AVAILABILITY: All data generated in this study are available for download and browsing at http://pedant.gsf.de/ARIA/index.htm.


Assuntos
Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Proteínas/química , Proteínas/classificação , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Sequência Conservada , Homologia de Sequência do Ácido Nucleico , Estatística como Assunto
18.
PLoS One ; 11(9): e0163362, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662471

RESUMO

BACKGROUND: Cardiomyopathies represent a rare group of disorders often of genetic origin. While approximately 50% of genetic causes are known for other types of cardiomyopathies, the genetic spectrum of restrictive cardiomyopathy (RCM) is largely unknown. The aim of the present study was to identify the genetic background of idiopathic RCM and to compile the obtained genetic variants to the novel signalling pathways using in silico protein network analysis. PATIENTS AND METHODS: We used Illumina MiSeq setup to screen for 108 cardiomyopathy and arrhythmia-associated genes in 24 patients with idiopathic RCM. Pathogenicity of genetic variants was classified according to American College of Medical Genetics and Genomics classification. RESULTS: Pathogenic and likely-pathogenic variants were detected in 13 of 24 patients resulting in an overall genotype-positive rate of 54%. Half of the genotype-positive patients carried a combination of pathogenic, likely-pathogenic variants and variants of unknown significance. The most frequent combination included mutations in sarcomeric and cytoskeletal genes (38%). A bioinformatics approach underlined the mechanotransducing protein networks important for RCM pathogenesis. CONCLUSIONS: Multiple gene mutations were detected in half of the RCM cases, with a combination of sarcomeric and cytoskeletal gene mutations being the most common. Mutations of genes encoding sarcomeric, cytoskeletal, and Z-line-associated proteins appear to have a predominant role in the development of RCM.

20.
Neuron ; 86(5): 1189-202, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26050039

RESUMO

Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain.


Assuntos
Encéfalo/fisiologia , Variação Genética/genética , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Estresse Psicológico/genética , Transcriptoma/genética , Animais , Estudos de Coortes , Previsões , Redes Reguladoras de Genes/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Estresse Psicológico/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA