Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
Traffic ; 20(3): 246-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569578

RESUMO

Homeostasis and the complex functions of organisms and cells rely on the sophisticated spatial and temporal regulation of signaling in different intra- and extracellular compartments and via different mediators. We here present a set of fast and easy to use protocols for the target-specific immunomagnetic enrichment of receptor containing endosomes (receptosomes), plasma membranes, lysosomes and exosomes. Isolation of subcellular organelles and exosomes is prerequisite for and will advance their detailed subsequent biochemical and functional analysis. Sequential application of the different subprotocols allows isolation of morphological and functional intact organelles from one pool of cells. The enrichment is based on a selective labelling using receptor ligands or antibodies together with superparamagnetic microbeads followed by separation in a patented matrix-free high-gradient magnetic purification device. This unique magnetic chamber is based on a focusing system outside of the empty separation column, generating an up to 3 T high-gradient magnetic field focused at the wall of the column.


Assuntos
Fracionamento Celular/métodos , Endossomos/metabolismo , Campos Magnéticos , Fracionamento Celular/instrumentação , Linhagem Celular Tumoral , Endossomos/química , Endossomos/ultraestrutura , Humanos , Ligantes , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
3.
Cell Commun Signal ; 17(1): 90, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382980

RESUMO

BACKGROUND: Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS: Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS: We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS: Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.


Assuntos
Lipoilação , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Linhagem Celular , Regulação da Expressão Gênica , Humanos , NF-kappa B/metabolismo , Transporte Proteico , Tioléster Hidrolases/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2138-2146, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28765050

RESUMO

Tumor Necrosis Factor Receptor 1 (TNF-R1) transmits various intracellular signaling cascades leading to diverse biological outcomes, ranging from proliferation, differentiation, survival to the induction of various forms of cell death (i.e. apoptosis, necrosis, necroptosis). These signaling pathways have to be tightly regulated. Proteolysis is an important regulatory mechanism in TNF-R1 pro-apoptotic as well as anti-apoptotic/pro-inflammatory signaling. Some key players in these signaling cascades are known (mainly the caspase-family of proteases and a previously unrecognized "lysosomal death pathway" involving cathepsins), however the interaction of proteases in the regulation of TNF signaling is still enigmatic. Ubiquitination of proteins, both non-degradative degradative, which either results in proteolytic degradation of target substrates or regulates their biological function, represents another layer of regulation in this signaling cascade. We and others found out that the differences in signal quality depend on the localization of the receptors. Plasma membrane resident receptors activate survival signals, while endocytosed receptors can induce cell death. In this article we will review the role of ubiquitination and proteolysis in these diverse events focusing on our own contributions to the lysosomal apoptotic pathway linked to the subcellular compartmentalization of TNF-R1. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Assuntos
Apoptose/genética , Proteínas de Membrana/genética , Proteólise , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose/genética , Humanos , Lisossomos/genética , Lisossomos/ultraestrutura , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Ubiquitinação/genética
5.
Traffic ; 14(3): 321-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23231467

RESUMO

Here we describe a novel approach for the isolation and biochemical characterization of pathogen-containing compartments from primary cells: We developed a lipid-based procedure to magnetically label the surface of bacteria and visualized the label by scanning and transmission electron microscopy (SEM, TEM). We performed infection experiments with magnetically labeled Mycobacterium avium, M. tuberculosis and Listeria monocytogenes and isolated magnetic bacteria-containing phagosomes using a strong magnetic field in a novel free-flow system. Magnetic labeling of M. tuberculosis did not affect the virulence characteristics of the bacteria during infection experiments addressing host cell activation, phagosome maturation delay and replication in macrophages in vitro. Biochemical analyses of the magnetic phagosome-containing fractions provided evidence of an enhanced presence of bacterial antigens and a differential distribution of proteins involved in the endocytic pathway over time as well as cytokine-dependent changes in the phagosomal protein composition. The newly developed method represents a useful approach to characterize and compare pathogen-containing compartments, in order to identify microbial and host cell targets for novel anti-infective strategies.


Assuntos
Imãs , Fagossomos/microbiologia , Coloração e Rotulagem/métodos , Humanos , Lipídeos/química , Listeria monocytogenes/isolamento & purificação , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Imãs/química , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência , Mycobacterium/isolamento & purificação , Fagossomos/ultraestrutura
6.
Gastroenterology ; 146(1): 278-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120475

RESUMO

BACKGROUND & AIMS: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL-R1) (TNFRSF10A) and TRAIL-R2 (TNFRSF10B) on the plasma membrane bind ligands that activate apoptotic and other signaling pathways. Cancer cells also might have TRAIL-R2 in the cytoplasm or nucleus, although little is known about its activities in these locations. We investigated the functions of nuclear TRAIL-R2 in cancer cell lines. METHODS: Proteins that interact with TRAIL-R2 initially were identified in pancreatic cancer cells by immunoprecipitation, mass spectrometry, and immunofluorescence analyses. Findings were validated in colon, renal, lung, and breast cancer cells. Functions of TRAIL-R2 were determined from small interfering RNA knockdown, real-time polymerase chain reaction, Drosha-activity, microRNA array, proliferation, differentiation, and immunoblot experiments. We assessed the effects of TRAIL-R2 overexpression or knockdown in human pancreatic ductal adenocarcinoma (PDAC) cells and their ability to form tumors in mice. We also analyzed levels of TRAIL-R2 in sections of PDACs and non-neoplastic peritumoral ducts from patients. RESULTS: TRAIL-R2 was found to interact with the core microprocessor components Drosha and DGCR8 and the associated regulatory proteins p68, hnRNPA1, NF45, and NF90 in nuclei of PDAC and other tumor cells. Knockdown of TRAIL-R2 increased Drosha-mediated processing of the let-7 microRNA precursor primary let-7 (resulting in increased levels of mature let-7), reduced levels of the let-7 targets (LIN28B and HMGA2), and inhibited cell proliferation. PDAC tissues from patients had higher levels of nuclear TRAIL-R2 than non-neoplastic pancreatic tissue, which correlated with increased nuclear levels of HMGA2 and poor outcomes. Knockdown of TRAIL-R2 in PDAC cells slowed their growth as orthotopic tumors in mice. Reduced nuclear levels of TRAIL-R2 in cultured pancreatic epithelial cells promoted their differentiation. CONCLUSIONS: Nuclear TRAIL-R2 inhibits maturation of the microRNA let-7 in pancreatic cancer cell lines and increases their proliferation. Pancreatic tumor samples have increased levels of nuclear TRAIL-R2, which correlate with poor outcome of patients. These findings indicate that in the nucleus, death receptors can function as tumor promoters and might be therapeutic targets.


Assuntos
Apoptose/fisiologia , Carcinoma Ductal Pancreático/metabolismo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Humanos , Neoplasias Renais/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia
7.
Clin Sci (Lond) ; 128(9): 567-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25487516

RESUMO

The presence of angiotensin type 2 (AT2) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT2 receptor.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leiomiossarcoma/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Neoplasias Uterinas/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Proliferação de Células , Feminino , Humanos , Leiomiossarcoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Permeabilidade , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Neoplasias Uterinas/patologia
8.
Antimicrob Resist Infect Control ; 13(1): 20, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355509

RESUMO

BACKGROUND: In most of Europe and especially in Germany, there is currently a concerning rise in the number of hospital-acquired infections due to vancomycin-resistant Enterococcus faecium (VREfm). Therefore, there is a need to improve our understanding of the way VREfm spreads in hospitals. In this study, we investigated the molecular epidemiology of VREfm isolates from the first appearance at our university hospital in 2004 until 2010. There is only very scarce information about the molecular epidemiology of VREfm from this early time in Germany. METHODS: Our analysis includes all available first VREfm isolates of each patient at our tertiary care center collected during the years 2004-2010. If available, additional consecutive VREfm isolates from some patients were analyzed. We used multilocus sequence typing (MLST) and core genome multilocus sequence typing (cgMLST) for the analysis and description of nosocomial transmission pathways as well as the detection of outbreaks. RESULTS: VREfm isolates from 158 patients and 76 additional subsequent patient isolates were included in the analysis. Until 2006, detections of VREfm remained singular cases, followed by a peak in the number of VREfm cases in 2007 and 2008 with a subsequent decline to baseline in 2010. MLST and cgMLST analysis show significant changes in the dominant sequence types (STs) and complex types (CTs) over the study period, with ST192 and ST17 being responsible for the peak in VREfm cases in 2007 and 2008. The four largest clusters detected during the study period are comprised of these two STs. Cluster analysis shows a focus on specific wards and departments for each cluster. In the early years of this study (2004-2006), all analyzed VREfm stemmed from clinical specimens, whereas since 2007, approximately half of the VREfm were detected by screening. Of the 234 VREfm isolates analyzed, 96% had a vanB and only 4% had a vanA resistance genotype. CONCLUSIONS: This retrospective study contributes significant knowledge about regional VREfm epidemiology from this early VREfm period in Germany. One remarkable finding is the striking dominance of vanB-positive VREfm isolates over the entire study period, which is in contrast with countrywide data. Analysis of cgMLST shows the transition from sporadic VRE cases at our institution to a sharp increase in VRE numbers triggered by oligoclonal spread and specific outbreak clusters with the dominance of ST192 and ST17.


Assuntos
Enterococcus faecium , Enterococos Resistentes à Vancomicina , Humanos , Vancomicina , Estudos Retrospectivos , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Enterococcus faecium/genética , Centros de Atenção Terciária , Atenção Terciária à Saúde , Enterococos Resistentes à Vancomicina/genética
9.
Mol Oncol ; 18(2): 431-452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103190

RESUMO

The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Antígeno B7-H1/metabolismo , Ciclo Celular , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Vimentina
10.
Cancers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077645

RESUMO

The pleiotropic adipokine chemerin affects tumor growth primarily as anti-tumoral chemoattractant inducing immunocyte recruitment. However, little is known about its effect on ovarian adenocarcinoma. In this study, we examined chemerin actions on ovarian cancer cell lines in vitro and intended to elucidate involved cell signaling mechanisms. Employing three ovarian cancer cell lines, we observed differentially pronounced effects of this adipokine. Treatment with chemerin (huChem-157) significantly reduced OVCAR-3 cell numbers (by 40.8% on day 6) and decreased the colony and spheroid growth of these cells by half. The spheroid size of SK-OV-3 ovarian cancer cells was also significantly reduced upon treatment. Transcriptome analyses of chemerin-treated cells revealed the most notably induced genes to be interferon alpha (IFNα)-response genes like IFI27, OAS1 and IFIT1 and their upstream regulator IRF9 in all cell lines tested. Finally, we found this adipokine to elevate IFNα levels about fourfold in culture medium of the employed cell lines. In conclusion, our data for the first time demonstrate IFNα as a mediator of chemerin action in vitro. The observed anti-tumoral effect of chemerin on ovarian cancer cells in vitro was mediated by the notable activation of IFNα response genes, resulting from the chemerin-triggered increase of secreted levels of this cytokine.

11.
Science ; 378(6625): 1201-1207, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520901

RESUMO

Cell death induced by tumor necrosis factor (TNF) can be beneficial during infection by helping to mount proper immune responses. However, TNF-induced death can also drive a variety of inflammatory pathologies. Protectives brakes, or cell-death checkpoints, normally repress TNF cytotoxicity to protect the organism from its potential detrimental consequences. Thus, although TNF can kill, this only occurs when one of the checkpoints is inactivated. Here, we describe a checkpoint that prevents apoptosis through the detoxification of the cytotoxic complex IIa that forms upon TNF sensing. We found that autophagy-related 9A (ATG9A) and 200kD FAK family kinase-interacting protein (FIP200) promote the degradation of this complex through a light chain 3 (LC3)-independent lysosomal targeting pathway. This detoxification mechanism was found to counteract TNF receptor 1 (TNFR1)-mediated embryonic lethality and inflammatory skin disease in mouse models.


Assuntos
Apoptose , Proteínas Relacionadas à Autofagia , Proteínas de Membrana , Fator de Necrose Tumoral alfa , Proteínas de Transporte Vesicular , Animais , Camundongos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Dermatite/genética , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
PLoS One ; 17(8): e0261543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960718

RESUMO

Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster. Here we present the palmitoylome of Drosophila S2R+ cells, comprising 198 proteins, an estimated 3.5% of expressed genes in these cells. Comparison of orthologs between mammals and Drosophila suggests that S-palmitoylated proteins are more conserved between these distant phyla than non-S-palmitoylated proteins. To identify putative client proteins and interaction partners of the DHHC family of protein acyl-transferases (PATs) we established DHHC-BioID, a proximity biotinylation-based method. In S2R+ cells, ectopic expression of the DHHC-PAT dHip14-BioID in combination with Snap24 or an interaction-deficient Snap24-mutant as a negative control, resulted in biotinylation of Snap24 but not the Snap24-mutant. DHHC-BioID in S2R+ cells using 10 different DHHC-PATs as bait identified 520 putative DHHC-PAT interaction partners of which 48 were S-palmitoylated and are therefore putative DHHC-PAT client proteins. Comparison of putative client protein/DHHC-PAT combinations indicates that CG8314, CG5196, CG5880 and Patsas have a preference for transmembrane proteins, while S-palmitoylated proteins with the Hip14-interaction motif are most enriched by DHHC-BioID variants of approximated and dHip14. Finally, we show that BioID is active in larval and adult Drosophila and that dHip14-BioID rescues dHip14 mutant flies, indicating that DHHC-BioID is non-toxic. In summary we provide the first systematic analysis of a Drosophila palmitoylome. We show that DHHC-BioID is sensitive and specific enough to identify DHHC-PAT client proteins and provide DHHC-PAT assignment for ca. 25% of the S2R+ cell palmitoylome, providing a valuable resource. In addition, we establish DHHC-BioID as a useful concept for the identification of tissue-specific DHHC-PAT interactomes in Drosophila.


Assuntos
Aciltransferases , Drosophila melanogaster , Aciltransferases/genética , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Lipoilação/fisiologia , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional
13.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919140

RESUMO

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Células Endoteliais/metabolismo , Necroptose , Neoplasias/etiologia , Neoplasias/patologia , Animais , Antineoplásicos/farmacologia , Biomarcadores , Biomarcadores Tumorais , Comunicação Celular , Morte Celular , Suscetibilidade a Doenças/imunologia , Humanos , Necroptose/genética , Invasividade Neoplásica , Metástase Neoplásica , Inoculação de Neoplasia , Neoplasias/metabolismo , Neoplasias/terapia , Proteólise , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Cancers (Basel) ; 13(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063813

RESUMO

Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.

15.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831323

RESUMO

Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.


Assuntos
Proteína ADAM17/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/deficiência , Secretases da Proteína Precursora do Amiloide/metabolismo , Morte Celular , Sobrevivência Celular , Endocitose , Humanos , Células Jurkat , Células MCF-7 , Modelos Biológicos , NF-kappa B/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Células U937
16.
Cell Death Dis ; 12(8): 757, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34333527

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation. In addition, nuclear TRAIL-R2 (nTRAIL-R2) promotes malignancy by inhibiting miRNA let-7-maturation. Here, we show that TRAIL-R2 interacts with the tumor suppressor protein p53 in the nucleus, assigning a novel pro-tumor function to TRAIL-R2. Knockdown of TRAIL-R2 in p53 wild-type cells increases the half-life of p53 and the expression of its target genes, whereas its re-expression decreases p53 protein levels. Interestingly, TRAIL-R2 also interacts with promyelocytic leukemia protein (PML), a major regulator of p53 stability. PML-nuclear bodies are also the main sites of TRAIL-R2/p53 co-localization. Notably, knockdown or destruction of PML abolishes the TRAIL-R2-mediated regulation of p53 levels. In summary, our finding that nTRAIL-R2 facilitates p53 degradation and thereby negatively regulates p53 target gene expression provides insight into an oncogenic role of TRAIL-R2 in tumorigenesis that particularly manifests in p53 wild-type tumors.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
17.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416165

RESUMO

Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects. Intriguingly, recent studies uncovered specific functions of long ignored intracellular TRAIL-R1/-R2, with tumor-promoting functions of nuclear (n)TRAIL-R2 as the regulator of let-7-maturation. As nuclear trafficking of TRAIL-Rs is not well understood, we addressed this issue in our present study. Cell surface biotinylation and tracking of biotinylated proteins in intracellular compartments revealed that nTRAIL-Rs originate from the plasma membrane. Nuclear TRAIL-Rs-trafficking is a fast process, requiring clathrin-dependent endocytosis and it is TRAIL-dependent. Immunoprecipitation and immunofluorescence approaches revealed an interaction of nTRAIL-R2 with the nucleo-cytoplasmic shuttle protein Exportin-1/CRM-1. Mutation of a putative nuclear export sequence (NES) in TRAIL-R2 or the inhibition of CRM-1 by Leptomycin-B resulted in the nuclear accumulation of TRAIL-R2. In addition, TRAIL-R1 and TRAIL-R2 constitutively localize to chromatin, which is strongly enhanced by TRAIL-treatment. Our data highlight the novel role for surface-activated TRAIL-Rs by direct trafficking and signaling into the nucleus, a previously unknown signaling principle for cell surface receptors that belong to the TNF-superfamily.

18.
Cell Death Differ ; 26(9): 1631-1645, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30442947

RESUMO

Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death.


Assuntos
Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Necroptose/efeitos dos fármacos , Fenitoína/farmacologia , Animais , Anticonvulsivantes/farmacologia , Apoptose/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células HT29 , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Células NIH 3T3 , Necroptose/genética , Fenitoína/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores de Morte Celular/antagonistas & inibidores , Receptores de Morte Celular/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Sepse/tratamento farmacológico , Sepse/genética
19.
Curr Biol ; 13(20): 1814-9, 2003 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-14561408

RESUMO

The endocytic pathway depends on the actin cytoskeleton. Actin contributes to internalization at the plasma membrane and to subsequent trafficking steps like propulsion through the cytoplasm, fusion of phagosomes with early endosomes, and transport from early to late endosomes. In vitro studies with mammalian endosomes and yeast vacuoles implicate actin in membrane fusion. Here, we investigate the function of the actin coat that surrounds late endosomes in Dictyostelium. Latrunculin treatment leads to aggregation of these endosomes into grape-like clusters and completely blocks progression of endocytic marker. In addition, the cells round up and stop moving. Because this drug treatment perturbs all actin assemblies in the cell simultaneously, we used a novel targeting approach to specifically study the function of the cytoskeleton in one subcellular location. To this end, we constructed a hybrid protein targeting cofilin, an actin depolymerizing protein, to late endosomes. As a consequence, the endosomal compartments lost their actin coats and aggregated, but these cells remained morphologically normal, and the kinetics of endocytic marker trafficking were unaltered. Therefore, the actin coat prevents the clustering of endosomes, which could be one safeguard mechanism precluding their docking and fusion.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Dictyostelium/citologia , Endossomos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina , Animais , Western Blotting , Proteínas do Citoesqueleto/metabolismo , Dictyostelium/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Proteínas de Protozoários , Espectrometria de Fluorescência
20.
Oncotarget ; 8(12): 20067-20085, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223543

RESUMO

Acid sphingomyelinase (A-SMase) plays an important role in the initiation of CD95 signaling by forming ceramide-enriched membrane domains that enable clustering and activation of the death receptors. In TNF-R1 and TRAIL-R1/R2 signaling, A-SMase also contributes to the lysosomal apoptosis pathway triggered by receptor internalization. Here, we investigated the molecular mechanism of CD95-mediated A-SMase activation, demonstrating that A-SMase is located in internalized CD95-receptosomes and is activated by the CD95/CD95L complex in a biphasic manner.Since several caspases have been described to be involved in the activation of A-SMase, we evaluated expression levels of caspase-8, caspase-7 and caspase-3 in CD95-receptosomes. The occurrence of cleaved caspase-8 correlated with the first peak of A-SMase activity and translocation of the A-SMase to the cell surface which could be blocked by the caspase-8 inhibitor IETD.Inhibition of CD95-internalization selectively reduced the second phase of A-SMase activity, suggesting a fusion between internalized CD95-receptosomes and an intracellular vesicular pool of A-SMase. Further analysis demonstrated that caspase-7 activity correlates with the second phase of the A-SMase activity, whereas active caspase-3 is present at early and late internalization time points. Blocking caspases-7/ -3 by DEVD reduced the second phase of A-SMase activation in CD95-receptosomes suggesting the potential role of caspase-7 or -3 for late A-SMase activation.In summary, we describe a biphasic A-SMase activation in CD95-receptosomes indicating (I.) a caspase-8 dependent translocation of A-SMase to plasma membrane and (II.) a caspase-7 and/or -3 dependent fusion of internalized CD95-receptosomes with intracellular A-SMase-containing vesicles.


Assuntos
Linfócitos B/patologia , Caspases/metabolismo , Proteína Ligante Fas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Receptor fas/metabolismo , Apoptose , Linfócitos B/enzimologia , Inibidores de Caspase/farmacologia , Caspases/química , Membrana Celular/metabolismo , Proliferação de Células , Ativação Enzimática , Humanos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA