Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38360749

RESUMO

While originally identified as an antiviral pathway, recent work has implicated that cyclic GMP-AMP-synthase-Stimulator of Interferon Genes (cGAS-STING) signaling is playing a critical role in the neuroinflammatory response to traumatic brain injury (TBI). STING activation results in a robust inflammatory response characterized by the production of inflammatory cytokines called interferons, as well as hundreds of interferon stimulated genes (ISGs). Global knock-out (KO) mice inhibiting this pathway display neuroprotection with evidence that this pathway is active days after injury; yet, the early neuroinflammatory events stimulated by STING signaling remain understudied. Furthermore, the source of STING signaling during brain injury is unknown. Using a murine controlled cortical impact (CCI) model of TBI, we investigated the peripheral immune and microglial response to injury utilizing male chimeric and conditional STING KO animals, respectively. We demonstrate that peripheral and microglial STING signaling contribute to negative outcomes in cortical lesion volume, cell death, and functional outcomes postinjury. A reduction in overall peripheral immune cell and neutrophil infiltration at the injury site is STING dependent in these models at 24 h. Transcriptomic analysis at 2 h, when STING is active, reveals that microglia drive an early, distinct transcriptional program to elicit proinflammatory genes including interleukin 1-ß (IL-1ß), which is lost in conditional knock-out mice. The upregulation of alternative innate immune pathways also occurs after injury in these animals, which supports a complex relationship between brain-resident and peripheral immune cells to coordinate the proinflammatory response and immune cell influx to damaged tissue after injury.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/patologia , Citocinas/metabolismo , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Transdução de Sinais
2.
J Neuroinflammation ; 16(1): 210, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711546

RESUMO

BACKGROUND: The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS: Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS: EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS: Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Encefalite/metabolismo , Receptor EphA4/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Encefalite/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Receptor EphA4/genética
3.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059900

RESUMO

Subcellular location and activation of Tank Binding Kinase 1 (TBK1) govern precise progression through mitosis. Either loss of activated TBK1 or its sequestration from the centrosomes causes errors in mitosis and growth defects. Yet, what regulates its recruitment and activation on the centrosomes is unknown. We identified that NAK-associated protein 1 (NAP1) is essential for mitosis, binding to and activating TBK1, which both localize to centrosomes. Loss of NAP1 causes several mitotic and cytokinetic defects due to inactivation of TBK1. Our quantitative phosphoproteomics identified numerous TBK1 substrates that are not only confined to the centrosomes but are also associated with microtubules. Substrate motifs analysis indicates that TBK1 acts upstream of other essential cell cycle kinases like Aurora and PAK kinases. We also identified NAP1 as a TBK1 substrate phosphorylating NAP1 at S318 to promote its degradation by the ubiquitin proteasomal system. These data uncover an important distinct function for the NAP1-TBK1 complex during cell division.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Citocinese , Mitose , Proteínas Serina-Treonina Quinases , Humanos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
WIREs Mech Dis ; 15(3): e1597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632700

RESUMO

The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.


Assuntos
Infecções do Sistema Nervoso Central , Interferon Tipo I , Humanos , DNA/metabolismo , Doenças Neuroinflamatórias , Nucleotidiltransferases/genética , Transdução de Sinais/genética
5.
Front Mol Neurosci ; 15: 852243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283725

RESUMO

Background: Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods: Male, 8-week old wildtype, STING knockout (-/-), cGAS -/-, and NLRX1 -/- mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results: We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS -/- animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions: These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.

7.
J Mol Biol ; 432(8): 2510-2524, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689437

RESUMO

Selective autophagy of mitochondria, or mitophagy, refers to the specific removal and degradation of damaged or surplus mitochondria via targeting to the lysosome for destruction. Disruptions in this homeostatic process may contribute to disease. The identification of diverse mitophagic pathways and how selectivity for each of these pathways is conferred is just beginning to be understood. The removal of both damaged and healthy mitochondria under disease and physiological conditions is controlled by either ubiquitin-dependent or receptor-dependent mechanisms. In this review, we will discuss the known types of mitophagy observed in mammals, recent findings related to PINK1/Parkin-mediated mitophagy (which is the most well-studied form of mitophagy), the implications of defective mitophagy to neurodegenerative processes, and unanswered questions inspiring future research that would enhance our understanding of mitochondrial quality control.


Assuntos
Mitocôndrias/patologia , Mitofagia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Transdução de Sinais , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA